Abjad Documentation
Release 2.12

Trevor Baca, Josiah Oberholtzer, Victor Adan

March 25, 2013

CONTENTS

Start here 1
Abjad? 3
1.1 Abjadextends LilyPond e 3
1.2 Abjadextends Python e e e 3
1.3 Whatnext? e e e e e e e e 4
1.4 Mailing lists e e e e e e e 4
Installation 5
2.1 AbjaddependsonPython e 5
2.2 AbjaddependsonLilyPond L 5
2.3 Installing the current packaged version of Abjad with easy_install 5
2.4 Installing the current packaged version of Abjad from the Python Package Index 6
25 Afterinstall L L L 6
2.6 Notefor LINUX USEIS o v v i ittt it e e e e e e e e e 6
Version history 7
3.1 Abjad 212 . Lo 7
3.1.1 Performance increases i 7
3.1.2 Duration property reNames« v v vttt e e e e e e e e e e 7
3.1.3 Timespan integration it e e e e e e e e e e e e 7
3.1.4 Deepcopy changes i e e e e e e 7
315 Measure Classes e e e e e e 7
3.1.6 Othernew features 8
32 Abjad 2.11 . . o e e e 8
3.2.1 TheMetricalHierarchyclass i 8
3.2.2 Rewriting rhythms according to a different metric hierarchy 10
323 The quantizationtoolspackage 14
324 Thetimerelationtoolspackage v i i ... 16
325 Othernewfeatures 18
33 Older Versionso e e e e e e e e e 21
331 Abjad2.10 . ..o 21
332 Abjad2.9 ... e 25
333 Abjad2.8 ... 35
334 Abjad 2.7 ... 42
335 Abjad2.6 46
336 Abjad2.5 ... 49
337 Abjad 2.4 .. 50
338 Abjad2.3 ... 50
339 Abjad2.2 ... 51
33.10 Abjad 2.1 L e e e 51
3301 Abjad2.0 . . . e e e 51

I Examples 53

4 Bartok: Mikrokosmos 55
41 Thescore o 0 e e e e e e 55
42 TheMmMEASUIES . .« v v v v v e 55
43 Thenotes v v v v i e e e e e e e e e e e e e e e e e e 56
44 Thedetails e e e e e e e e 57

5 Ferneyhough: Unsichtbare Farben 61
5.1 The proportions o v i i e e e e e e e e e e e e e 61
5.2 Thetransforms e e e e e 61
53 Therhythms e 61
54 TheSCOore o i i e e 62
5.5 TheLilyPondfile e e e e e e 62

6 Ligeti: Désordre 65
6.1 Thecell e 66
6.2 Themeasure o i v i i i e e e e e e 67
6.3 Thestaff e e 68
6.4 Thescore o i i e e e e e 68

7 Mozart: Musikalisches Wiirfelspiel 71
7.1 Thematerials e e e e e e e e e e e e 71
7.2 TheStuCture v v e 76
T3 Thescore e e e e e e e e 77
7.4 Thedocument e e e e e e e 79

8 Pirt: Cantus in Memory of Benjamin Britten 81
8.1 Thescoretemplate L L e e e e e e 81
8.2 ThebellmMuSiC e e e e e e e e e e 83
8.3 Thestring MUSIC v v v v i i e 83
8.4 Theedits e e e e e e e e e e e e e e 87
8.5 Themarks e e e e e e e e e e e e e e e 88
8.6 TheLilyPondfile e 91

III System Overview 95

9 Leaf, Container, Spanner, Mark 97
9.1 Example 1 e e e e e e e 97
9.2 Example2 e e e e e e e 99

10 Parsing 101
10.1 LilyPond Parsing o 0 e e e e e 101
10.2 RhythmTree Parsing o e 104
10.3 “Reduced-Ly” Parsing e e 105

IV Tutorials 107

11 Getting started 109
11.1 Knowing your operating SYStem v v v v vt e e e e e e e e e e e e e e e 109
11.2 Chosingatexteditor o o i i e e e e e e e 109
11.3 Launching the terminal e 109
11.4 Wheretosave your work oL e e 109

12 LilyPond “hello, world!” 111
12.1 Writingthefile o L e 111
12.2 Interpretingthe file e e e e e 112
12.3 Repeating the process o v i it e e e e e e e e e e e e 112

13

14

15

16

17

18

19

20

21

22

23

24

Python “‘hello, world!” (at the interpreter)

13.1 Starting the interpreter v o v v e e e e e e e e e e e e e e e e e
13.2 Entering commands L. e e e e e e
13.3 Stopping the interpreterl e e e e e

Python ‘‘hello, world!” (in a file)

14.1 Writingthefile e
14.2 Interpreting thefile e
14.3 Repeating the process it i e e e e e e

More about Python
15.1 Doing many things o i i e e e e e e e e e e e
15.2 Lookingaround e e e e

Abjad “hello, world” (at the interpreter)

16.1 Starting the INtErpreter o v v v it e e e e e e e e e e e e e e e e
16.2 Entering commands Lo e e e e e e e
16.3 Stopping the interpreter ot e e e e e e e e e e e e e e

Abjad “‘hello, world!” (in a file)

17.1 Writingthefile o e
17.2 Interpretingthefile e e e e
17.3 Repeating the process o v i it i e e e e e e e e e e

More about Abjad
18.1 Howitworks e e e e e
18.2 InmSpecting OutpUL o i i e e e e e e e e e e e e e

Changing notes to rests

19.1 Aseriesof NOLES o o i i e e e
19.2 Notes belonging to a staff can be iterated oL oo,
193 Notescanbeuseddirectly e

Creating rest-delimited slurs

20.1 Enterin inpUut oo e e e e e e e e e e e e e e e
20.2 Groupingnotesandchords L.
20.3 Skippingone-note slurs L. L e e e

Making grob overrides

21.1 Grob-override component plug-ins
21.2 Grob proxXi€s v v v v v i e e e e e e e e e e e e e
21.3 Dot-chained override Syntax o v v it e e e e e e e e e e e e e e e e

Mapping lists to rhythms
22.1 Simpleexample e e e

Understanding LilyPond grobs

23.1 Grobs control typography e e e e
23.2 Grobscanbeoverridden L
23.3 Nested Grob properties can be overriden L0 e e e
23.4 Checkthe LilyPonddocs 0 e e e e e

Understanding time signature marks

24.1 Getting started L e e e e e e e e e e e e e
242 LilyPond’simplicit 4/4 e
24.3 Using time signature marks ot e e e e e e e e e e e
244 First-measure pick-ups oL L
245 Timesignature APT. L

113
113
113
113

115
115
115
115

117
117
117

119
119
119
119

121
121
121
121

123
123
123

125
125
125
125

127
127
127
128

129
129
129
129

131
131

133
133
133
134
134

25

26

\Y%

27

28

29

30

Working with component parentage

25.1 Improper parentage« v v v v v e
25.2 Proper parentage« v v e vt e
25.3 Parentage attributes L. e e e e

Working with threads

Reference manual

Annotations

27.1 Creating annotationst vttt e e e e e e e e e e e e e
27.2 Attaching annotations t0 @ COMPONENt« v v v vt v bt e e e e e e e e e
27.3 Getting the annotations attached to a component
27.4 Detaching annotations from a componentone atatime
27.5 Detaching all annotations attached to a componentatonce v v v v v
27.6 Inspecting the component to which an annotation is attached
27.7 Inspecting annotation NAME Lt e e e e e e e e
27.8 Inspecting annotation value e

Articulations

28.1 Creating articulations oL e
28.2 Attaching articulations toaleaf L. oL
28.3 Attaching articulations to many notes and chordsatonce L.
28.4 Getting the articulations attachedtoaleaf,
28.5 Detaching articulations from aleafoneatatime, .
28.6 Detaching all articulations attached to aleafatonce
28.7 Inspecting the leaf to which an articulation is attached,
28.8 Understanding the interpreter display of an articulation that is not attachedtoaleaf
28.9 Understanding the interpreter display of an articulation that is attached toaleaf
28.10 Understanding the string representation of an articulation.
28.11 Inspecting the LilyPond format of an articulation
28.12 Controlling whether an articulation appears above or below the staff
28.13 Getting and setting the name of an articulation L.
28.14 Copying articulations e e e e e e e
28.15 Comparing articulations L e e e e e e e e e e e e e e e
28.16 Overriding attributes of the LilyPond scriptgrob

Chords

29.1 Making chords from a LilyPond input string
29.2 Making chords from chromatic pitch numbers and duration
29.3 Getting all the written pitches of achordatonce
29.4 Getting the written pitches of achordoneatatime
29.5 Addingone pitchtoachordatatime
29.6 Adding many pitchestoachordatonce e
29.7 Deleting pitches fromachord L
29.8 Formatting chords L e e e e
29.9 Workingwithnoteheads L
29.10 Working with empty chords L

Containers

30.1 Creating CONtaiNers« o v v v vt v v e et e e e e e e e e e e e e e e
30.2 InSpecting MuUSIC v it e e e e e e e e e e e e e
30.3 Imspectinglength oL e e e e e e
30.4 Inspecting duration Ll e e e e e e e e e e e e e e e e
30.5 Adding one component to the end of acontainer oL

145
145
145
145

147
147
148
150

153

155
155
155
155
155
156
156
156
156

157
157
157
157
158
158
158
158
159
159
160
160
160
161
161
161
162

163
163
163
163
163
164
164
164
165
165
166

30.6 Adding many components to the end of acontainer oL
30.7 Finding the index of acomponent i e e e e e
30.8 Inserting acomponentbyindex e e
30.9 Removing acomponentbyindex Lo o
30.10 Removing a component by reference oL
30.11 Naming CONtaAINerS v v v v v v vt e e ettt e e e e e e e e e e e e e e
30.12 Understanding { } and << >>inLilyPond
30.13 Understanding sequential and parallel containers
30.14 Changing sequential and parallel containers
30.15 Overriding CONtainers v v v it e e e e e e e e e e e e e e e e e
30.16 Overriding containers’ CONENLS v v v vt v e e et e e e e e e e e
30.17 Removing container overrideso L L e e e e e e e e

31 Durations
31.1 Introduction e e e e
31.2 Assignability e e e e e e e e e e e e e e e
31.3 Prolation e e e e e e e
31.3.1 Tupletprolation e
31.3.2 Meterprolation e e e e e e e e e
31.3.3 Theprolationchain e
31.4 Duration types v v vt e e e e e e e e e e e e e e e e
31.4.1 Writtenduration e e e e e e
31.42 Prolated duration e
31.4.3 Contents duration v v vt e e e e e e e e e e e e e e
3144 Targetduration e e e
31.4.5 Multiplied durationo e e e e e e e
31.5 Duration initialization L L e
31.6 LilyPond multipliers e e e e e e e
31.7 Duration interfaces comparedo oL e

32 Instrument marks
32.1 Creatinginstrument marks L Lo e e e e e e e e e e e
32.2 Attaching instrument marks toacomponent oL
32.3 Getting the instrument mark attached toacomponent
32.4 Getting the instrument in effect foracomponent oL
32.5 Detaching instrument marks from a componentoneatatime
32.6 Detaching all instrument marks attached to a componentatonce
32.7 Inspecting the component to which an instrument mark is attached
32.8 Inspecting the instrument name of an instrumentmark
32.9 Inspecting the short instrument name of an instrumentmark,

33 /0
33.1 Reopening Abjad PDFs
33.2 Looking at LilyPond output e
33.3 Looking atthe LilyPondlog e e

34 LilyPond command marks
34.1 Creating LilyPond command marks L o
34.2 Attaching LilyPond command marks to Abjad components
34.3 Getting the LilyPond command marks attached to an Abjad component
34.4 Detaching LilyPond command marks from components one atatime
34.5 Detaching all LilyPond command marks attached to a componentatonce
34.6 Inspecting the component to which a LilyPond command mark is attached
34,7 Getting and setting the command name of a LilyPond command mark
34.8 Copying LilyPond commands e e e e
349 Comparing LilyPond command marks L oL

35 LilyPond comments
35.1 Creating LilyPond comments e e e e

175
175
175
176
176
176
177
177
177
178
178
179
179
179
181
182

183
183
183
183
183
184
184
184
185
185

187
187
187
188

189
189
189
189
190
190
190
191
191
191

193
193

36

37

38

39

40

41

42

35.2
353
354
355
35.6
35.7
35.8

Attaching LilyPond comments toleaves e
Attaching LilyPond comments to containers oo
Getting the LilyPond comments attached toacomponent
Detaching LilyPond comments from a componentone atatime
Detaching all LilyPond comments attached to a componentatonce
Inspecting the component to which a LilyPond comment is attached
Inspecting contents string of a LilyPond comment

LilyPond files

36.1
36.2
36.3
36.4

Making LilyPond files e
Inspecting file output L e e e e e e e e e e e
Setting default paper Size o e e e e e e e e
Setting global staff size

Measures

37.1
37.2
373

Notes
38.1
38.2
38.3
38.4
38.5
38.6
38.7
38.8

Understanding measures in LilyPond oL o oo oo
Understanding measures in Abjad oL Lo oo
Creating MEASUIES v v v v v v e

Making notes from a stringol e e e e e e e
Making notes from chromatic pitch number and duration
Getting the written pitchof notes
Changing the written pitch of notes e
Getting the duration attributes of notes L L
Changing the written duration of notes Lo L.
Overriding NOtes o i i e e e e e e e e
Removing note overrides

Pitches

39.1
39.2
39.3
39.4
39.5
39.6
39.7
39.8
39.9
39.10
39.11
39.12
39.13
39.14

Creating pitches L e
Inspecting thename of apitch L
Inspecting the octave of apitch e
Working with pitch deviation e
Sorting pitches e
Comparing pitches e
Converting one type of pitchtoanother,
Converting pitches to pitch-classes L e
Copying pitches o e e e e e e e e e e
Accidental abbreviations oL e
Chromatic pitch numbers e
Diatonic pitchnumbers e
Octave designation o v v it vt e e e e e e e e e
Accidental spelling e e e e e e e e

Working with lists of numbers

Rests
41.1
41.2
41.3
41.4

Making rests from Stringso e e
Making rests from durationso e e
Getting the duration attributes of rests e e e
Changing the written duration of rests L e

Scores

42.1
422
42.3
42.4
42.5

CreatiNn@ SCOTES .+« v v v v v v e
Inspecting SCOre MUSIC v v v v v et e e e e e e e e e e e e e e e e e e
Inspecting score length L
Inspecting score duration e e
Adding one component to the bottomofascore L.

197
197
197
197
198

199
199
199
200

201
201
201
201
201
202
202
203
203

205
205
205
205
205
206
206
206
207
207
207
207
208
209
209

211

213
213
213
213
214

vi

43

44

45

46

42.6 Finding the index of a score component e e
42.7 Removing a score componentbyindex L L L e
42.8 Removing a score component by reference L L oo
429 Testing score CONtAINMENtttt e e e e e e
42.10 NamMing SCOTES . . o v v v v e v e et e e e e e e e e e e e e e e e e e

Spanners

43.1 Overriding spannerso e e e e e e e e e
43.2 Overriding the components to which spanners attach,
43.3 Removing spanner overrideso L e e e e e e e e

Staves

44.1 Creating StAVES . . . v v v v v v v e e e e e e e e e e e e e e e e e
442 Inspecting staff music e e
44.3 Inspecting staff length e e e
444 Inspecting staff duration L e e
44.5 Adding one component totheend ofastaff o000
44.6 Adding many components totheendofastaff o0 0oL
447 Finding the index of a staff component
44.8 Removing a staff componentbyindex L L e
44.9 Removing a staff componentby reference L o L oo
4410 Naming StAVES . . . v v v v v e
4411 Forcin@ CONLEXL . .« . v v v v i e

Tuplets

45.1 Making a tuplet from a LilyPond input string oL,
45.2 Making a tuplet from a list of other Abjad components
45.3 Understanding the interpreter display of atuplet oo,
45.4 Understanding the string representation of atuplet,
45.5 Inspecting the LilyPond formatofatuplet.
45.6 Inspectingthe musicinatuplet L L
457 Inspecting atuplet’sleaves L L e
45.8 Gettingthelengthofatuplet L
459 Getting the duration attributes of atuplet oL oo
45.10 Understanding rhythmic augmentation and diminution
45.11 Understanding binary and nonbinary tuplets oo
45.12 Adding one component to theend of atuplet Lo
45.13 Adding many components totheendofatuplet
45.14 Finding the index of a componentinatuplet
45.15 Removing a tuplet componentby index e
45.16 Removing a tuplet component by reference Lo
45.17 Overriding attributes of the LilyPond tuplet number grob
45.18 Overriding attributes of the LilyPond tuplet bracket grob

Voices

46.1 Making a voice from a LilyPond input string o
46.2 Making a voice from a list of other Abjad components
46.3 Understanding the reprofavoice i e
46.4 Inspecting the LilyPond formatofavoice
46.5 Inspectingthe muSiCINaVOICE v v v i v i i e it e e e e e e e e e e
46.6 Inspectingavoice’sleaves L e
46.7 Getting the lengthofavoice e
46.8 Getting the duration attributes of avoice oL
46.9 Adding one componenttotheendofavoice
46.10 Adding many components totheendofavoice
46.11 Finding the index of a componentinavoice
46.12 Removing a voice component by index L Lo
46.13 Removing a voice component by reference Lo Lo
46.14 Naming VOICES . . . v v v v v v v e e e e e e e e e e e e e e e e e

221
221
221
221
221
221
222
222
222
222
223
223

225
225
225
225
225
226
226
226
226
227
227
227
227
228
228
228
228
228
229

231
231
231
231
231
232
232
232
232
233
233
233
233
234
234

vii

46.15 Changing the context of a VOIiCe o o v v it e e e 234

VI Developer documentation 237
47 Codebase 239
47.1 How the Abjad codebaseislaidout L o 239
47.2 Removing prebuilt versions of Abjad before youcheckout 240
47.3 Installing the development Version oo e e e e 241
48 Docs 243
48.1 How the Abjaddocs arelaidout e 243
48.2 Installing Sphinx L L e e 243
48.3 Removingoldbuildsofthedocs e 243
48.4 Generating the Abjad APL e 244
48.5 Buildingthe HTML docs. o 0 e e e 244
48.6 Buildinga PDFofthedocs 245
48.7 Building a coverage report oot e e e e e e e e e e 246
48.8 Building other versions of thedocs L e 246
48.9 Inserting images with abjad-book L e 247
48.10 Updating SphinX o L e e e e e e e e 247
49 Tests 249
49.1 Automated regression? L. oL e e e e e e e e 249
49.2 Runningthebattery e 249
49.3 Reading teStoutput e e e e e 250
49.4 WIItINZ TESIS . . . v v v v o e i e e e e e e e e e e e e e e e 250
49,5 Testfilesstart with test__ 0 0 e e e e e e e e e e 250
49.6 Avoiding name conflicts L. e e e e e 250
49.7 Updating py.test e 250
49.8 Running doctest onthe toolsdirectory 250
50 Scripts 253
50.1 Searching the Abjad codebase with abj-grep 253
50.2 Removing old % .pyc files with abj-rmpycso oo 254
50.3 Updating your development copy of Abjad with abj-update 254
50.4 Counting lines of code with count—source—1ines 254
50.5 Global search-and-replace with replace—in-files 254
50.6 Adding new development SCriptS oo 255
51 Using abjad-book 257
51.1 HTML withembedded Abjad 258
51.2 LaTeX with embedded Abjad e 259
51.3 Using abjad-book onReST documents 261
51.4 Using [hide=true] e e e 261
52 Timing code 263
53 Profiling code 265
54 Memory consumption 267
55 Class attributes 269
56 Using slots 271
57 Coding standards 273

viii

VII Appendices

58 From Trevor and Victor

59 Why MIDI is not enough
59.1 A very brief overview of MIDI . .
59.2 Limitations of MIDI from the point of view of score modeling
59.3 Written note durations vs. MIDI delta-times
59.4 Written note pitch vs. MIDInote-on it e e
59.5 Conclusion

60 Why LilyPond is right for Abjad

60.1 Nested tuplets works out of the box
60.2 Broken tuplets work out of the box

60.3 Nonbinary meters work outofthebox L oo
60.4 Lilypond models the musical measure correctly Lo

61 LilyPond text alignment
61.1 Default alignment
61.2 TextScript #’/self-alignment—X it
61.3 TextScript #’'X-offset .

62 Score Snippet Gallery
62.1 Scoresnippet1

63 Change log

63.1 Changes from 2.10to 2.11
63.2 Older Versions

63.2.1
64 Bibliography

Bibliography

Changes from 2.9 to 2.10

277
279

281
281
281
282
282
282

283
283
283
284
284

285
285
285
286

287
287

289
289
294
294

307

309

Part I

Start here

CHAPTER
ONE

ABJAD?

Abjad is an interactive software system designed to help composers build up complex pieces of music notation
in an iterative and incremental way. Use Abjad to create a symbolic representation of all the notes, rests, staves,
tuplets, beams and slurs in any score. Because Abjad extends the Python programming language, you can use
Abjad to make systematic changes to your music as you work. And because Abjad wraps the powerful LilyPond
music notation package, you can use Abjad to control the typographic details of the symbols on the page.

1.1 Abjad extends LilyPond

LilyPond is an open-source music notation package invented by Han-Wen Nienhuys and Jan Niewenhuizen and
extended by an international team of developers and musicians. LilyPond differs from other music engraving
programs in a number of ways. LilyPond separates musical content from page layout. LiyPond affords typographic
control over almost everything. And LilyPond implements a powerfully correct model of the musical score.

You can start working with Abjad right away because Abjad creates LilyPond files for you automatically. But
you will work with Abjad faster and more effectively if you understand the structure of the LilyPond files Abjad
creates. For this reason we recommend new users spend a couple of days learning LilyPond first.

Start by reading about text input in LilyPond. Then work the LilyPond tutorial. You can test your understanding
of LilyPond by using the program to engrave of a Bach chorale. Use a grand staff and and include slurs, fermatas
and so on. Once you can engrave a chorale in LilyPond you’ll understand the way Abjad works with LilyPond
behind the scenes.

1.2 Abjad extends Python

Python is an open-source programming language invented by Guido van Rossum and further developed by a team
of programmers working in many countries around the world. Python is used to provision servers, process text,
develop distributed systems and do much more besides. The dynamic language and interpreter features of Python
are similar to Ruby while the syntax of Python resembles C, C++ and Java.

To get the most out of Abjad you need to know (or learn) the basics of programming in Python. Abjad extends
Python because it makes no sense to reinvent the wheel modern programming langauges have developed to find,
sort, store, model and encapsulate information. Abjad simply piggy-backs on the ways of doing these things that
Python provides. So to use Abjad effectively you need to know the way these things are done in Python.

Start with the Python tutorial. The tutorial is structured in 15 chapters and you should work through the first 12.
This will take a day or two and you’ll be able to use all the information you read in the Python tutorial in Abjad.
If you’re an experienced programmer you should skip chapters 1 - 3 but read 4 - 12. When you’re done you can
give yourself the equivlanent of the chorale test suggested above. First open a file and define a couple of classes
and functions in it. Then open a second file and write some code to first import and then do stuff with the classes
and functions you defined in the first file. Once you can easily do this without looking at the Python docs you’ll
be in a much better position to work with Abjad.

http://www.lilypond.org
http://lilypond.org/text-input.html
http://www.lilypond.org/doc/v2.15/Documentation/learning/tutorial
http://www.python.org
http://docs.python.org/tutorial/

Abjad Documentation, Release 2.12

1.3 What next?

The most important parts of Abjad are the interlocking objects that structure the system. Read about the way
Abjad models pitch, duration, leaves, containers, spanners and marks in the Abjad reference manual.

But note that important parts of the system are missing from the manual. The reason for this is that we completed
the Abjad API months before we started the manual. This means that classes and functions you look up in the API
may not yet be documented in the manual. The reference manual will eventually document all parts of the system.
But until then check the API if the manual doesn’t yet have what you need.

Once you understand the basics about how to work with Abjad you should spend some time with the Abjad API.
The API documents all the functionality available in the system. Abjad comprises about 168,000 lines of code.
About half of these implement the automated tests that check the correctness of Abjad. The rest of the code
implements 39 packages comprising 221 classes and 1029 functions. All of these are documented in the APL

1.4 Mailing lists

As you begin working with Abjad please be in touch.
Questions, comments and contributions are welcomed from composers everywhere.
Questions or comments? Join the abjad-user list.

Want to contribute? Join the abjad-devel list.

4 Chapter 1. Abjad?

http://groups.google.com/group/abjad-user
http://groups.google.com/group/abjad-devel

CHAPTER
TWO

INSTALLATION

2.1 Abjad depends on Python

You must have Python 2.7 installed to run Abjad.
Abjad does not yet support the Python 3.x series of releases.
To check the version of Python installed on your computer type the following:

python —--version

You can download different versions of Python at http://www.python.org.

2.2 Abjad depends on LilyPond

You must have LilyPond 2.16 or greater installed for Abjad to work properly.
You can download LilyPond at http://www.lilypond.org.

After you have installed LilyPond you should type the following to see if LilyPond is callable from your comman-
dline:

lilypond --version

If LilyPond is not callable from your commandline you should add the location of the LilyPond executable to your
PATH environment variable.

If you are new to working with the commandline you should use Google to get a basic introduction to editing your
profile and setting environment variables.

2.3 Installing the current packaged version of Abjad with
easy_install

There are different ways to install Python packages on your computer. One of the most direct ways is with
easy_install.

If you have easy_install installed on your computer then you can install Abjad with this command:

sudo easy_install -U abjad

Python will install Abjad in the site packages directory on your computer and you’ll be ready to start using the
system.

If you do not have easy_install installed on your computer then you should follow the instructions below to
install the current packaged version of Abjad from the Python Package Index.

http://www.python.org
http://www.lilypond.org

Abjad Documentation, Release 2.12

2.4 Installing the current packaged version of Abjad from the
Python Package Index

If youdonothave easy_install installed on your computer you should follow these steps to install the current
packaged version of Abjad from the Python Package Index:

1. Download the current release of Abjad from http://pypi.python.org/pypi/Abjad.
2. Unarchive the downloaded file. Under MacOS and Windows you can double click the archived file.
Under Linux execute the following command with x . y replaced by the current release of Abjad:

tar xzvf Abjad-x.y.tar.gz

3. Change into the directory created in step 2:

cd Abjad-x.y

4. Run the following under MacOS or Linux:

sudo python setup.py install

5. Or run this command under Windows after starting up a command shell with administrator privileges:

setup.py install

These commands will cause Python to install Abjad in your site packages directory. You’ll then be ready to start
using Abjad.

2.5 After install

When first run, Abjad creates an .abjad directory in your own $HOME directory. In SHOME/ .abjad you
will find the Abjad configuration file: config.py. Here you can tell Abjad about your preferred PDF file
viewer, MIDI player, your preferred LilyPond language, etc. All relevant variables have defaults that you can
change to suit your needs. In Linux, for example, you might want to set your pdfviewer to evince and your
MIDIplayerto tiMIDIty.

config.py is aregular Python file, so you should make sure the file follows Python syntax.

2.6 Note for Linux users

Abjad defaults to xdg-open to display PDF files using your default PDF viewer. Most Linux distributions now
come with xdg—utils installed.

If you do not have xdg—uti1ls installed, you can download it from http://www.portland.freedsektop.org.

Alternatively you can set the pdfviewer variable in SHOME/ . abjad/config to your favorite PDF viewer.

6 Chapter 2. Installation

http://pypi.python.org/pypi/Abjad
http://www.portland.freedsektop.org

CHAPTER
THREE

VERSION HISTORY

3.1 Abjad 2.12

Released 2013-03-24. Built from r9810. Implements 559 public classes and 1045 functions totaling 216,000 lines
of code.

3.1.1 Performance increases

Abjad 2.12 introduces a number of performance optimizations. LilyPondFile objects format four times faster
than before. Duration objects initialize faster. NonreducedFraction arithmetic operations are faster.
Context marks like dynamics and tempo indications now attach and detach much faster.

3.1.2 Duration property renames

You may now use note.duration, rest.duration, staff.duration and so on to access the duration
of all objects in the system. The previous term prolated_duration has been removed from all objects in the
system.

3.1.3 Timespan integration

You may now use note.timespan.start_offset and note.timespan.stop_offset to access the
start- and stop-offsets of notes. The previous note.start_offset and note.stop_offset properties
have been removed from the system. Note that the same is true for all other durated objects systemwide.

3.1.4 Deepcopy changes

You may now use Python’s built-in copy .deepcopy () to copy any object in the system. Previous versions
of Abjad aliased Python’s deepcopy. In Abjad 2.12 deepcopy copies all attributes of a score component and all
references the component holds. This result is that deepcopying a note will result in the note being copied as well
as the entire score tree in which the note is embedded.

3.1.5 Measure classes

Abjad 2.12 features only a single Measure class. The anonymous measure and dynamic measures have been
removed from the system.

The string format of Measure objects has been updated to indicate ties:

>>> m = Measure((5, 4), "c’'4 ~ c’ d" ~ d" e'")

>>> str(m)
"|5/4 ¢c'4 ~ c'4 d"4 ~ d'4 e’4 "

Abjad Documentation, Release 2.12

3.1.6 Other new features

Extended 1ilypondfiletools.ContextBlock with read/write alias property. This allows for the defi-
nition of new context in reference to existing contexts:

>>> context_block = lilypondfiletools.ContextBlock ()

>>> context_block.context_name = ’'Staff’
>>> context_block.type = 'Engraver_group’
>>> context_block.name = 'CustomStaff’
>>> context_block.alias = ’'Staff’

>>> f (context_block)
\context {

\Staff

\name CustomStaff

\type Engraver_group

\alias Staff

\override StaffSymbol #’color = #red
}

The sequencetools. Tree class now implements graphviz_format and graphviz_graph properties.
You can use these to visualized any tree object you create.

The Note.sounding_pitch property is now read / write.

Articulation marks can now initialize from other Articulation marks and Dynamic marks can now
initialize from other Dynami c marks.

The MetricGridSpanner class has been removed from the spannertools package.

You may now clear the pitches of a chord with chord[:] = []. The Chord.clear () method has been
removed.

New iotools.profile_expr () keywords available. The print_callers=True and
print_callees=True break profiler output to calling and called functions, respectively. Set

print_to_terminal=False to return profiler output as a string.

A new iotools.count_function_calls () function is available. Use the function to return the number
of function calls required to interpret any Abjad expression.

A new iotools.which () function is available. The new function is cross-platform and can be used to check
for the presence of commandline tools before opening pipes.

Automatic line breaking is now available in abjad-book LaTeX output. Thanks to Jeffry Trevifio for this
feature.

3.2 Abjad 2.11

Released 2013-02-05. Built from r9468. Implements 515 public classes and 1016 functions totaling 210,000 lines
of code.

3.2.1 The MetricalHierarchy class

A new MetricalHierarchy class is now available in the t imesignaturetools package.
The class implements a rhythm tree-based model of nested time signature groupings.

The structure of the tree corresponds to factors of the time signature’s numerator.

Each deeper level of the tree divides the previous by the next factor in sequence.

Prime divisions greater than 3 are converted to sequences of 2 and 3 summing to that prime. Hence 5 becomes
3+2 and 7 becomes 3+2+2.

The MetricalHierarchy class models a common-practice understanding of meter:

8 Chapter 3. Version history

Abjad Documentation, Release 2.12

>>> metrical_hierarchy = timesignaturetools.MetricalHierarchy ((4, 4)

>>> metrical_hierarchy
MetricalHierarchy (' (4/4 (1/4 1/4 1/4 1/4))")

>>> print metrical_hierarchy.pretty_rtm format
(474 (

1/4

1/4

1/4

1/4))

>>> print timesignaturetools.MetricalHierarchy ((3, 4)) .pretty_rtm format
(3/4 (

1/4

1/4

1/4))

>>> print timesignaturetools.MetricalHierarchy ((6, 8)).pretty_rtm_ format
(6/8 (
(3/8 (
1/8
1/8
1/8))
(3/8 (
1/8
1/8
1/8))))

>>> print timesignaturetools.MetricalHierarchy ((5, 4)).pretty_rtm format
(5/4 (
(3/4 (
1/4
1/4
1/4))
(2/4 (
1/4
1/4))))

>>> print timesignaturetools.MetricalHierarchy ((5, 4),

C. decrease_durations_monotonically=False) .pretty_rtm_format
(5/4 (
(2/4 (

1/4

1/4))
(3/4 (

1/4

1/4

1/4))))

>>> print timesignaturetools.MetricalHierarchy((12, 8)) .pretty_rtm_format
(12/8 (
(3/8 (
1/8
1/8
1/8))
(3/8 (
1/8
1/8
1/8))
(3/8 (
1/8
1/8
1/8))
(3/8 (
1/8
1/8
1/8))))

3.2. Abjad 2.11 9

Abjad Documentation, Release 2.12

3.2.2 Rewriting rhythms according to a different metric hierarchy

A new establish_metrical_hierarchy () function is now available in the timesignaturetools
package.

The function rewrites the contents of tie chains to match a metrical hierarchy.

Example 1. Rewrite the contents of a measure in a staff using the default metrical hierarchy for that measure’s
time signature:

>>> parseable = "abj: | 2/4 c¢’2 ~ || 4/4 c¢’32 d’2.. ~ d'16 e’32 ~ || 2/4 e'2 |"

>>> staff = Staff (parseable)
>>> f (staff)
\new Staff {
{
\time 2/4
c’'2 ~

\time 4/4
c’ 32
d2.. ~
d’1e6

e’32 ~

\time 2/4
e’?2

g

!

>>> hierarchy = timesignaturetools.MetricalHierarchy ((4, 4))
>>> print hierarchy.pretty_rtm format
(474 (

1/4

1/4

1/4

1/4))

>>> timesignaturetools.establish_metrical_hierarchy(staff[1][:], hierarchy)
>>> f (staff)
\new Staff {
{
\time 2/4
e’2 =~

\time 4/4
c’32
da’8.. ~
da’r2 ~
d’8..
e’32 ~

10 Chapter 3. Version history

Abjad Documentation, Release 2.12

\time 2/4
e’2
}
}
(4]
6{ 2 =
AN ¥ *E .
e/ = =
A
e/ I — i
fi
B ——

Example 2. Rewrite the contents of a measure in a staff using a custom metrical hierarchy:

>>> staff = Staff (parseable)
>>> f (staff)
\new Staff {

{

\time 2/4
c’'2 ~
}
{
\time 4/4
c’32
da’r2.. ~
d’le
e’32 ~
}
{
\time 2/4
e’2
}
}
4}
|) 1
e 1 &
AN L 3
e/ & —
4}
|
RS F ;
[2 — ’
fi
P
>>> rtm = ‘' (4/4 ((2/4 (1/4 1/4)) (2/4 (1/4 1/4))))’

>>> hierarchy = timesignaturetools.MetricalHierarchy (rtm)
>>> print hierarchy.pretty_rtm format
(474 (
(274 «
1/4
1/4))
(274 (
1/4

3.2. Abjad 2.11

11

Abjad Documentation, Release 2.12

1/4))))

>>> timesignaturetools.establish_metrical_hierarchy (staff[1][:],

>>> f (staff)
\new Staff {
{
\time 2/4
c’'2 ~

\time 4/4
c’32
d’4... ~
dr4...
e’32 ~

\time 2/4
e’2

N

poln
b el

hierarchy)

Example 3. Limit the maximum number of dots per leaf using maximum_dot_count:

>>> parseable = "abj: | 3/4 ¢’32 d'8 e’8 fs'4... |"
>>> measure = p(parseable)
>>> f (measure)

{

\time 3/4
c’32
d’8
e’8
fs’4...
}
f)
L3] 1
1] e I 1
R ' o
u .‘.i " b

Do not constrain the maximum_dot_count:

>>> timesignaturetools.establish_metrical_hierarchy (measure[:], measure)

>>> f (measure)
{
\time 3/4
c’ 32
d’16. ~
d’ 32
e’le. ~
e’ 32
fs’4...

12

Chapter 3

. Version history

Abjad Documentation, Release 2.12

4]
L3] h I

4 .

®
e

Constrain the maximum_dot_count to 2:

>>> measure = p(parseable)
>>> timesignaturetools.establish_metrical_hierarchy (measure[:], measure,
.. maximum_dot_count=2)
>>> f (measure)
{

\time 3/4

c’ 32

d’1l6. ~

d’ 32

e’l6. ~

e’ 32

8’800

fs’4

)
i 4

(3] | — _=I'

[, . ¥ ___ &= _ -

i

Constrain the maximum_dot_count to I:

>>> measure = p(parseable)
>>> timesignaturetools.establish_metrical_hierarchy (measure[:], measure,
.. maximum_dot_count=1)
>>> f (measure)
{

\time 3/4

c’32

d’1l6. ~

d’ 32

e’l6. ~

e’ 32

fs’l6. ~

fs’8 ~

fs’4

4]

| : (15 . i

Constrain the maximum_dot_count to 0:

>>> measure = p(parseable)
>>> timesignaturetools.establish_metrical_hierarchy (measure[:], measure,
.. maximum_dot_count=0)
>>> f (measure)
{

\time 3/4

c’ 32

d’r32 ~

d’le ~

d’ 32

e’32 ~

e’l6 ~

e’ 32

fs’32 ~

fs’16 ~

fs’8 ~

fs’4

3.2. Abjad 2.11 13

Abjad Documentation, Release 2.12

- —

=i |

o - e
.‘_'."‘-_-l‘"

Many further examples are available in the API entry for the class.

3.2.3 The quantizationtools package

The quantizationtools package has been completely rewritten.
Quantizer quantizes sequences of attack-points in score trees.

QEvent Sequences bundle attack-points together:

>>> quantizer = quantizationtools.Quantizer ()

>>> durations = [1000] = 8

>>> pitches = range(8)

>>> g_event_sequence = quantizationtools.QEventSequence.from millisecond_pitch_pairs(
zip (durations, pitches))

Quantization defaults to 4 /4 output at quarter=60:

>>> result = quantizer (g_event_sequence)
>>> score = Score([Staff ([result])])
>>> f (score)
\new Score <<
\new Staff ({
\new Voice {
{
\time 4/4
\tempo 4=60
c’4
cs’4
d’4
ef’4

e’ 4
fr4
fs’4
g4

L= 4o

The behavior of the Quant izer can be modified at call-time.

=

 1LER

Pass a QSchema instance to alter the macro-structure of quantizer output.

Here, we quantize using settings specified by a MeasurewiseQSchema. This causes the Quantizer to group
the output into measures with different tempi and time signatures:

>>> measurewise_g_schema = quantizationtools.MeasurewiseQSchema (
{’tempo’: ((1, 4), 78), ’"time_signature’: (2, 4)},
{’tempo’: ((1, 8), 57), ’'time_signature’: (5, 4)},
)

14 Chapter 3. Version history

Abjad Documentation, Release 2.12

>>> result = quantizer (g_event_sequence, g_schema=measurewise_g_schema)
>>> score = Score([Staff([result])])
>>> f (score)
\new Score <<
\new Staff {
\new Voice {
{
\time 2/4
\tempo 4=78
c’'4 ~
\times 4/5 {
c’lé6.
e’8.. =

\time 5/4

\tempo 8=57

\times 4/7 {
cs’1l6.
d’8 ~

}

\times 4/5 {
d’16
ef’l6. ~

}

\times 2/3 {
ef’l6
e’'8 ~

}

\times 4/7 {
e’l6
fr8 ~
£32 ~

}

£ 32

fs’16. ~

\times 4/5 {
fs’32
g’8 ~

}

\times 4/7 {
g’ 32
r4. ~
r32 ~

r4

>>

Jors ——a—

iR

! 1 P |
v & & fer

I\-‘_‘———._'-.

—fd= r—5d=a —325 — 8=

E}’ = ﬂ" J.,_____,l' b",l_'___,_,dlqil - ‘] j"@j‘ %’i

[S—

Here we quantize using settings specified by a BeatwiseQSchema. This keeps the output of the quantizer flat-
tened and produces neither measures nor explicit time signatures. The default beatwise setting of quarter=60
persists until the third beatspan:

>>> beatwise_g schema = quantizationtools.BeatwiseQSchema (

{

2: {’tempo’: ((1, 4), 120)},
5: {’tempo’: ((1, 4), 90)},
7: {’tempo’: ((1, 4), 30)},

3.2. Abjad 2.11 15

Abjad Documentation, Release 2.12

})

>>> result = quantizer (g_event_sequence, dg_schema=beatwise_qg_schema)
>>> score = Score ([Staff ([resultl])])
>>> f (score)
\new Score <<
\new Staff ({
\new Voice {
\tempo 4=60
c’4
cs’ 4
\tempo 4=120
d’2
ef’4 ~
\tempo 4=90
ef’8.
e’4 ~
e’le ~
\times 2/3 {
\tempo 4=30
e’ 32
£8.
fs’8 ~
fs"32 ~
}
\times 2/3 {
fs’ 32
g’8.
r8 ~
r32

el &

o

Refer to the BeatwiseQSchema and MeasurewiseQSchema API entires for more information on control-
ling Quantizer output.

Refer to the SearchTree API entry for information on controlling the rhythmic complexity of Quantizer
output.

3.2.4 The timerelationtools package

A new timerelationtools package is now available.

The timerelationtools package features seven functions for using natural language to compare the in-time
position on an offset relative to a reference timespan:

timerelationtools.offset_happens_after_ timespan_starts ()
timerelationtools.offset_happens_after timespan_stops ()
timerelationtools.offset_happens_before_timespan_starts ()

16 Chapter 3. Version history

Abjad Documentation, Release 2.12

timerelationtools
timerelationtools
timerelationtools
timerelationtools

.offset_happens_before_timespan_stops ()
.offset_happens_during_timespan ()
.offset_happens_when_timespan_starts ()
.offset_happens_when_timespan_stops ()

The timerelationtools package contains 26 functions for using natural language to compare the in-time
position of one timespan relative to another:

timerelationtools
timerelationtools
timerelationtools
timerelationtools
timerelationtools
timerelationtools
timerelationtools
timerelationtools
timerelationtools
timerelationtools
timerelationtools
timerelationtools
timerelationtools
timerelationtools
timerelationtools
timerelationtools
timerelationtools
timerelationtools
timerelationtools
timerelationtools
timerelationtools
timerelationtools
timerelationtools
timerelationtools
timerelationtools
timerelationtools

.timespan_2_contains_timespan_1_improperly ()
.timespan_2_curtails_timespan_1 ()
.timespan_2_delays_timespan_1 ()
.timespan_2_happens_during_timespan_1 ()
.timespan_2_intersects_timespan_1 ()
.timespan_2_is_congruent_to_timespan_1 ()
.timespan_2_overlaps_all_of_ timespan_1 ()
.timespan_2_overlaps_only_start_of_timespan_1 ()
.timespan_2_overlaps_only_stop_of_timespan_1 ()
.timespan_2_overlaps_start_of_timespan_1 ()
.timespan_2_overlaps_stop_of_timespan_1 ()
.timespan_2_starts_after_ timespan_1_starts ()
.timespan_2_starts_after_ timespan_1_stops ()
.timespan_2_starts_before_timespan_1_starts()
.timespan_2_starts_before_timespan_1_stops ()
.timespan_2_starts_during_timespan_1 ()
.timespan_2_starts_when_timespan_1_starts ()
.timespan_2_starts_when_timespan_1_stops ()
.timespan_2_stops_after_timespan_1_starts ()
.timespan_2_stops_after_timespan_1_stops ()
.timespan_2_stops_before_timespan_1_starts ()
.timespan_2_stops_before_timespan_1_stops ()
.timespan_2_stops_during_timespan_1 ()
.timespan_2_stops_when_timespan_1_starts()
.timespan_2_stops_when_timespan_1_stops ()
.timespan_2_trisects_timespan_1 ()

Here’s an example of some of the natural language comparison functions available in the t imerelationtools

package:

>>> staff_1 = Staff(r"\times 2/3 { c’4 d’4 e’4 } \times 2/3
>>> staff_2 = Staff("c’2. d’'4")
>>> score = Score([staff_1, staff_2])

>>> f (score)
\new Score <<
\new Staff {

\times 2/3 {

c’4
d’4
e’ 4

}

\times 2/3 {

fr4
9’4
a4

}

\new Staff {
c’2.
d’4

>>

>>> last_tuplet =

staff_1[-1]

>>> long_note = staff_ 2[0]

>>> timerelationtools.timespan_2_happens_during_timespan_1 (
timespan_l=last_tuplet, timespan_2=long_note)

False

{ £74 g'4 a’'4

L)

3.2. Abjad 2.11

17

Abjad Documentation, Release 2.12

>>> timerelationtools.timespan_2_intersects_timespan_1 (
timespan_l=last_tuplet, timespan_2=long_note)
True

>>> timerelationtools.timespan_2_is_congruent_to_timespan_1 (
timespan_l=last_tuplet, timespan_2=long_note)
False

>>> timerelationtools.timespan_2_overlaps_all_of_timespan_1 (
timespan_l=last_tuplet, timespan_2=long_note)
False

>>> timerelationtools.timespan_2_overlaps_start_of_timespan_1 (
timespan_l=last_tuplet, timespan_2=long_note)
True

>>> timerelationtools.timespan_2_overlaps_stop_of_timespan_1 (
timespan_l=last_tuplet, timespan_2=long_note)
False

>>> timerelationtools.timespan_2_starts_after_timespan_1_starts(
timespan_l=last_tuplet, timespan_2=long_note)
False

>>> timerelationtools.timespan_2_starts_after_timespan_1_stops (
timespan_l=last_tuplet, timespan_2=long_note)
False

3.2.5 Other new features

Autocompletion is now available at the Abjad prompt.
New tutorials describe how to get started with Abjad:

Getting started

LilyPond “hello, world!”

Python “hello, world!” (at the interpreter)
Python “hello, world!” (in a file)

More about Python

Abjad “hello, world” (at the interpreter)
Abjad “hello, world!” (in a file)

More about Abjad

Music notation images now appear in the docstrings of many functions throughout the API.

Added new iotools.graph () function to the iotools package. A small number of classes throughout
the system have started to gain a graphviz_format attribute, including datastructuretools.Digraph,
documentationtools.InheritanceGraph, some of the rhythmtreetools.RhythmTreeNode
subclasses, and even t imesignaturetools.MetricalHierarchy:

>>> hierarchy = timesignaturetools.MetricalHierarchy ((7, 4))
>>> iotools.graph (hierarchy)

18 Chapter 3. Version history

Abjad Documentation, Release 2.12

574
34 214
./ \. ' \
1/4 | 1/4 | 1/4 | 1/4 | 174 |

Forced accidentals and cautionary accidentals are now available as properties:

>>> note = notetools.Note("c’4")
>>> note.note_head.is_forced = True
>>> f (note)

c’ !4

>>> note.note_head.is_cautionary = True
>>> f (note)
c’ 1?4

Forced accidentals and cautionary accidentals are also now available at instantiation:

>>> note = Note("c’!?24")
>>> note
Note ("c’ !24")

>>> chord = Chord("<c’!? e’? g’! b’>4")
>>> chord
Chord ("<c’!? e’?2 g’! b’>4")

>>> Note (chord)
Note ("c’ !124")

>>> Chord (note)
Chord ("<c’ ! ?2>4")

Added a function to register custom markup globally with the LilyPond parser:

>>> from abjad.tools.lilypondparsertools import LilyPondParser

>>> name = ‘my-custom-markup-function’
>>> signature = ['‘markup?’]
>>> LilyPondParser.register_markup_function (name, signature)

>>> parser = LilyPondParser ()

>>> string = r"\markup { \my-custom-markup-function { foo bar baz } }"

>>> parser (string)

Markup ((MarkupCommand (’ my—-custom-markup—-function’, [’foo’, ’'bar’, ’'baz’]),))
>>> f(_)

\markup { \my-custom-markup-function { foo bar baz } }
Note that this once registered, the custom markup command is also recognized when instantiating parsed markup
objects:

>>> markuptools.Markup (r"\my-custom-markup-function { foo bar baz }")
Markup ((MarkupCommand ('’ my-custom-markup—-function’, [’foo’, ’'bar’, ’'baz’]),))

Added new markuptools.MusicGlyph class. This is a subclass of markuptools.MarkupCommand,
and can therefore be used anywhere MarkupCommand can appear. It guarantees correct quoting around the

3.2. Abjad 2.11 19

Abjad Documentation, Release 2.12

glyph name (which is easy to forget, or not always clear how to do for new users), and also checks that the glyph
name is recognized in LilyPond:

>>> markuptools.MusicGlyph (' accidentals.sharp’)
MusicGlyph (’accidentals.sharp’)

>>> print _
\musicglyph #"accidentals.sharp"

The durationtools package now implements three related classes. All three classes are now available in the
global namespace. Durations, multipliers and offsets are now distinguished everywhere in Abjad:

Duration
Multiplier
Offset

Implemented new NonreducedRatio class. Compare with existing Rat io class:

>>> mathtools.NonreducedRatio (2, 4, 2)
NonreducedRatio (2, 4, 2)

>>> mathtools.Ratio (2, 4, 2)
Ratio(1l, 2, 1)

Added new componenttools.ScoreSelection subclasses. All selections are improper:

componenttools.Descendants
componenttools.Lineage
componenttools.Parentage

New score selection subclasses are also accessible via:

Component .descendants
Component . lineage
Component .parentage

Added 1ilypondfiletools.LilyPondDimension class:

>>> dimension = lilypondfiletools.LilyPondDimension (2, ’“in’)
>>> f (dimension)
2.0\in

Added a new parseable tag to abjad-book: <abjadextract module \>[flags]. This single-line tag
imports the code found at module, and copies the actual code text itself into the abjad-book session, just as though
it had been manually included between a pair of <abjad></abjad> tags. The intended use is in Abjad’s
literature examples. Most of the examples are also written up in the demos/ directory.

The abjad-book executable now handles multi-page PNG output.
Implemented page selection in abjad-book. Example: show pages 2 through 5 of a multipage score:

<abjad>
show (foo) <page 2-5
</abjad>

Added new EvenRunRhythmMaker class to the rhythmmakertools package. For each division on which
the class is called, the class produces an even run of notes each equal in duration to 1/d with d equal to the
division denominator:

>>> maker = rhythmmakertools.EvenRunRhythmMaker ()

>>> divisions = [(4, 16), (3, 8), (2, 8)]
>>> lists = maker (divisions)
>>> containers = sequencetools.flatten_sequence (lists)

>>> staff = Staff (containers)

20 Chapter 3. Version history

Abjad Documentation, Release 2.12

>>> f (staff)
\new Staff {
{
c’l6 [
c’l6
c’l6
c’l6 1]

3.3 Older versions

3.3.1 Abjad 2.10

Released 2012-10-05. Built from r7615. Implements 437 public classes and 982 functions totalling 179,000 lines
of code.

The following packages now load by default when you start Abjad:

Abjad 2.10

>>> [x for x in dir() if x.endswith('tools')]

["abjadbooktools', 'beamtools', 'chordtools', 'componenttools', 'containertools', 'contexttools',
'developerscripttools', 'durationtools', 'formattools', 'gracetools', 'instrumenttools',
'introspectiontools', 'iotools', 'iterationtools', 'labeltools', 'layouttools', 'leaftools',
'lilypondfiletools', 'marktools', 'markuptools', 'mathtools', 'measuretools', 'notetools', '
'offsettools', 'pitcharraytools', 'pitchtools', 'resttools', 'rhythmtreetools', 'schemetools',
'scoretemplatetools', 'scoretools', 'sequencetools', 'sievetools', 'skiptools', 'spannertools',
'stafftools', 'stringtools', 'tempotools', 'tietools', 'timeintervaltools', 'timesignaturetools',
'rhythmmakertools', 'tonalitytools', 'tuplettools', 'verticalitytools', 'voicetools']

Improved formatting engine. Scores now format approximately 30% faster.
Improved LilyPond parser.
Markup objects now parse input string input on initialization:

>>> markuptools.Markup (r’\bold \tiny { foo bar baz }’)

Markup ((MarkupCommand (’bold’, MarkupCommand (’tiny’, [’foo’, ’'bar’, ’'baz’l)),))
>>> print _.indented_lilypond_format
\markup {
\bold
\tiny
{
foo
bar
baz

You can now use context names to reference named contexts attached to any container:

>>> template = scoretemplatetools.StringQuartetScoreTemplate ()
>>> score = template ()

3.3. Older versions 21

Abjad Documentation, Release 2.12

>>> score[’First Violin Staff’
Staff-"First Violin Staff"{1}

>>> score[’First Violin Voice’]
Voice-"First Violin Voice"{}

Five new constants are available globally.

¢ The constants are Left, Right, Up, Down and Center.

* The constants function like Python’s built-in True and False.

» Use the constants as keyword defaults.

A new configuration tool is available:

configurationtools.get_abjad_startup_string ()

New context tools are available:

contexttools.all_are_contexts ()

Anew iterationtools package is available:

iterationtools.
iterationtools.
iterationtools.
iterationtools.
.iterate_containers_in_expr ()
iterationtools.
iterationtools.
iterationtools.
iterationtools.
iterationtools.
iterationtools.
.iterate_notes_in_expr ()
iterationtools.
iterationtools.
iterationtools.
iterationtools.
iterationtools.
iterationtools.
.iterate_thread_in_expr ()
iterationtools.
iterationtools.
iterationtools.
iterationtools.

iterationtools

iterationtools

iterationtools

iterate_chords_in_expr ()
iterate_components_and_grace_containers_in_expr ()
iterate_components_depth_first ()
iterate_components_in_expr ()

iterate_contexts_in_expr ()
iterate_leaf pairs_in_expr ()
iterate_leaves_in_expr ()
iterate_measures_in_expr ()
iterate_namesakes_from_component ()
iterate_notes_and_chords_in_expr ()

iterate_rests_in_expr ()
iterate_scores_in_expr ()
iterate_semantic_voices_in_expr ()
iterate_skips_in_expr ()
iterate_staves_in_expr ()
iterate_thread_from_component ()

iterate_timeline_from_component ()
iterate_timeline_in_expr ()
iterate_tuplets_in_expr ()
iterate_voices_in_expr ()

New LilyPond file tools are available:

lilypondfiletools.make_floating_time_signature_lilypond_file ()

New LilyPond parser tools are available:

lilypondparsertools
lilypondparsertools
lilypondparsertools
lilypondparsertools
lilypondparsertools
lilypondparsertools
lilypondparsertools
lilypondparsertools
lilypondparsertools
lilypondparsertools.

.GuileProxy

.LilyPondDuration

.LilyPondEvent

.LilyPondFraction
.LilyPondLexicalDefinition
.LilyPondSyntacticalDefinition
.ReducedLyParser

.SchemeParser

. SyntaxNode
lilypond_enharmonic_transpose ()

A new Ratio class is available in the mathtools package:

>>> mathtools.Ratio (1,
,1)

Ratio (1, 2,

2, -1)

New rhythm-tree tools are available.

22

Chapter 3. Version history

Abjad Documentation, Release 2.12

* Implemented RTM expression parser:

rhythmtreetools.RhythmTreeParser

* Implemented new classes for explicitly constructing rhythm-trees:

RhythmTreeNode
RhythmTreeLeaf
RhythmTreeContainer

>>> from abjad import =x
>>> rtm = 7 (1 (1 (2 (1 -1 1)) -2))"’
>>> result = rhythmtreetools.RhythmTreeParser () (rtm)

>>> result[0]
RhythmTreeContainer (
children=(

RhythmTreeLeaf (
duration=1,
pitched=True,

)I

RhythmTreeContainer (
children=(

RhythmTreeLeaf (
duration=1,
pitched=True,
) s

RhythmTreeLeaf (
duration=1,
pitched=False,
)l

RhythmTreeLeaf (
duration=1,
pitched=True,
)!

)
duration=2
),

RhythmTreeLeaf (
duration=2,
pitched=False,

)I
) s
duration=1
)

>>> _ .rtm_format
(1 (1L (2 (1L -1 1)) -2))"’
>>> result[0] ((1, 4))

FixedDurationTuplet (1/4, [c’l6, {@ 3:2 c’l6, rl6, c’l6 @}, r8])

>>> f(_)
\times 4/5 {
c’l6
\times 2/3 {
c’l6
rle
c’l6

New Scheme tools are available.

e Added force_quotes boolean keyword to schemetools.Scheme and
schemetools.format_scheme_value ():

>>> schemetools.format_scheme_value (' foo’)
" foo’

3.3. Older versions 23

Abjad Documentation, Release 2.12

>>> schemetools.format_scheme_value (' foo’, force_quotes=True)
’ llfoolll

This allows you to force double quotes around strings which contain no spaces. This is necessary for some
LilyPond grob overrides.

A new Scheme formatting function is available:

schemetools.format_scheme_value ()

New score-template tools are available:

scoretemplatetools.GroupedStavesScoreTemplate

New sequence tools are available:

¢ Added sequencetools.merge_duration_sequences ():

>>> sequencetools.merge_duration_sequences([10, 10, 10], [7])
[7, 3, 10, 10]

¢ Added sequencetools.pair_duration_sequence_elements_with_input_pair_values():

>>> duration_sequence = [10, 10, 10, 10]

>>> input_pairs = [('red’, 1), ('orange’, 18), ("yellow’, 200)]

>>> sequencetools.pair_duration_sequence_elements_with_input_pair_values (
... duration_sequence, input_pairs)

[(10, ’"red’), (10, ’orange’), (10, ’'yellow’), (10, "yellow’)]

New tie tools are available:

tietools.get_tie_spanner_attached_to_component ()

New time-interval tools are available:

timeintervaltools.make_voice_from_nonoverlapping_intervals ()

New time-token tools are available:

* Added SkipRhythmMaker to rhythmmakertools package:

>>> maker = rhythmmakertools.SkipRhythmMaker ()

>>> duration_tokens = [(1, 5), (1, 4), (1, 6), (7, 9)]
>>> leaf lists = maker (duration_tokens)

>>> leaves = sequencetools.flatten_sequence (leaf_lists)
>>> staff = Staff (leaves)

>>> f (staff)
\new Staff {
sl » 1/5
sl = 1/4
sl 1/6
sl » 7/9

¢ Added TupletMonadRhythmMaker to rhythmmakertools package:

>>> maker = rhythmmakertools.TupletMonadRhythmMaker ()

>>> duration_tokens = [(1, 5), (1, 4), (1, 6), (7, 9)]
>>> tuplets = maker (duration_tokens)
>>> staff = Staff (tuplets)

>>> f (staff)

\new Staff {
\times 4/5 {

c’4

24

Chapter 3. Version history

Abjad Documentation, Release 2.12

c’4

}

\times 2/3 {
c’4

}

\times 8/9 {
c’'2..

3.3.2 Abjad 2.9

Released 2012-06-05. Built from r5795. Implements 405 public classes and 1066 functions totalling 182,000
lines of code.

Extended markup handling is now available.
* The LilyPond parser accepts complex markup as input:

>>> f(p(r’’"{ c’4 _ \markup { \put-adjacent #1 #-1 \bold \fontsize #2 \upright foo bar } }’’"))
{
c’4
_ \markup {
\put-adjacent
#1
#-1
\bold
\fontsize
#2
\upright
foo
bar

» Format routines allow for markup indentation:

>>> circle = markuptools.MarkupCommand(’draw-circle’, 2.5, 0.1, False)

>>> square = markuptools.MarkupCommand (’ rounded-box’, "hello?’)

>>> line = markuptools.MarkupCommand(’line’, [square, 'wow!’])

>>> markup = markuptools.Markup((’'X’, square, ’'Y’, line, ’'Z’), direction="up’)

>>> print ’‘\n’.join (markup._get_format_pieces (is_indented=True))
~ \markup {
X
\rounded-box
hello?
Y
\line
{
\rounded-box
hello?
wow !

* Nontrivial markup format with indentation automatically:

>>> staff = Staff("c")

>>> ml = markuptools.Markup ('’ foo’) (staff[0])

>>> m2 = markuptools.Markup (’'bar’) (staff[0])

>>> m3 = markuptools.Markup ('baz’, "up’) (staff[0])

>>> m4 = markuptools.Markup (' quux’, ’"down’) (staff[0]
>>> accent = marktools.Articulation(’accent’) (staff[0]

>>> f (staff)
\new Staff {

3.3. Older versions 25

Abjad Documentation, Release 2.12

c4 -\accent
~ \markup { baz }
_ \markup { quux }
- \markup {
\column

{
foo
bar

}

e Markup.contents is now a tuple of strings or MarkupCommand instances.

* Removed the markup style_string property. Use schemetools classes for constructing Scheme-
style formatting.

* Changed Markup.contents_stringtoMarkup.contents.
An entirely new tuplet microlanguage is now available.
* This “reduced ly” syntax uses braces to show tuplet nesting and represents rhythm without pitch:

>>> from abjad.tools import rhythmtreetools
>>> container = rhythmtreetools.parse_reduced_ly_syntax(’4 -4 8 5/3 { 2/3 { 8 8 8 } { 8 8

>>> f (container)

{

c’4
r4d
c’8
\fraction \times 5/3 {
\times 2/3 {
c’8
c’8
c’8
}
{
c’8
c’8
}
r8
}
c’4

¢ Measures and dotted values are also available:

>>> container = rhythmtreetools.parse_reduced_ly_syntax(’ [2/4 8. 16 8. 16| |4/4 2/3 { 2 2 2

f (container)

\time 2/4
c'8.
c'le6
c'8.
c'lo

\time 4/4
\times 2/3 {
c'2
c'2
c'2

26 Chapter 3. Version history

)

47)

Abjad Documentation, Release 2.12

Extended container input syntax.
* You can now pass strings directly to the append () and extend () methods of any container:

>>> container = Container ()
>>> container

{1}

>>> container.extend(’a b c¢’)
>>> container
{ad4, b4, c4}

>>> container.append(’d’)
>>> container
{ad4, b4, c4, d4}

* You can assign a string to any container item:

>>> container = Container ("c’ d’ e’")
>>> container
{c’4, d’4, e’4}

>>> container[1l] = 'r’
>>> container
{c’4, rd4, e’4}

* You can assign a string to any container slice:

>>> container = Container ("c’ d’ e’")
>>> container
{cr4, d'4, e’4}

>>> container[:2] = 'r8 r r’
>>> container
{r8, r8, r8, e'4}

* You can initialize containers from strings using alternate parsers.
Use the " abj’ prefix to initialize a container with the new reduced ly syntax:

>>> staff = Staff(’abj: | 2/4 2/3 { 8 4} 8 8 || 3/4 4 4 4 |")

>>> f (staff)
\new Staff {
{
\time 2/4
\times 2/3 {
c’8
c’4

Q Q —«
oo 0o

\time 3/4
c’4
c’4
c’4

* Use the ’ rtm’ prefix to initialize a container with IRCAM RTM-style syntax:

>>> staff = Staff('rtm: (1 (1 (2 (1 1 1)) 1)) (1 (1 1))")

3.3. Older versions 27

Abjad Documentation, Release 2.12

>>> f (staff)
\new Staff {
c’l6
\times 2/3 {
c’l6
c’'l6
c’l6

* Parallel contexts, such as Score, can be instantiated from strings which parse to a sequence of contexts:

Score (r’’’\new Staff { ¢’ } \new Staff = { c, }''")

Added a new FixedDurationContainer class to the containertools package.

Fixed-duration containers extend container behavior with format-time checking against a user-specified
target duration:

>>> container = containertools.FixedDurationContainer((3, 8), "c’8 d’8 e’8")

>>> container
FixedDurationContainer (Duration (3, 8), [Note("c’8"), Note("d’8"), Note("e’8")])

>>> f (container)
{

c’8

d’s

e’8

>>> container.is_misfilled
False

>>> container.pop ()
Note ("e’8")

>>> container
FixedDurationContainer (Duration (3, 8), [Note("c’8"), Note("d’8")])

>>> container.is_misfilled
True

Misfilled fixed-duration containers will raise an exception at format-time. Fixed-duration containers share
this behavior with measures.

Regularized measure modification behavior.

* By default measures do not automatically adjust time signature after contents modification:

>>> measure = Measure((3, 4), "c’ d’ e’")
>>> measure
Measure (3/4, [c’4, d'4, e'4])

>>> measure.append(’'r’)
>>> measure
Measure (3/4, [c’4, d’4, e’'4, r4d])

>>> measure.is_overfull
True

But it is now possible to cause measures to automatically adjust time signature after contents modification:

>>> measure = Measure((3, 4), "c’ d’ e’")

>>> measure.automatically_adjust_time_signature = True
>>> measure

Measure (3/4, [c’4, d'4, e’4])

28

Chapter 3. Version history

Abjad Documentation, Release 2.12

>>> measure.append(’'r’)
>>> measure
Measure (4/4, [c’4, d’4, e’4, r4d])

>>> measure.is_misfilled
False

Previous implementations of measure append (), extend () and set-item never adjusted measure time
signatures.

Now the behavior of such operations is controllable on a measure-by-measure basis by the end user.
New functionality is available for working with ties.

* Added a TieChain class to the tietools package. Tie chains now return as a custom TieChain
object instead of tuple:

>>> staff = Staff("c’ d’ e’ ~ e'")

>>> tietools.get_tie_chain(staff[2])
TieChain ((Note("e’4"), Note("e’4")))

Reimplemented tie chain duration attributes as explicit class attributes. The following four functions have
been removed:

tietools.get_preprolated_tie_chain_duration ()
tietools.get_prolated_tie_chain_duration ()
tietools.get_tie_chain_duration_in_seconds ()
tietools.get_written_tie_chain_duration ()

Use these read-only properties instead:

TieChain.preprolated_duration
TieChain.prolated_duration
TieChain.duration_in_seconds
TieChain.written_duration

The TieChain class inherits from the new Selection abstract base class.
Added new tietools functions:

tietools.iterate_pitched_tie_chains_forward in_expr ()
tietools.iterate_pitched_tie_chains_backward_in_expr ()
tietools.iterate_nontrivial_tie_chains_forward_in_expr ()
tietools.iterate_nontrivial_tie_chains_backward_in_expr ()

Removed tietools.is_tie_chain (expr). Use isinstance (expr,
tietools.TieChain) instead.

Removed tietools.get_leaves_in_tie_chain (). Use TieChain.leaves instead.

Removed tietools.group_leaves_in_tie_chain_by_immediate_parents (). Use
TieChain.leaves_grouped_by_immediate_parents instead.

Removed tietools.is_tie_chain_with_all_leaves_in_same_parent (). Use
TieChain.all_leaves_are_in_same_parent instead.

Added a new stringtools package.
* The following functions all migrated from the iotools package:

stringtools.capitalize_string_start ()
stringtools.format_input_lines_as_doc_string()
stringtools.format_input_lines_as_regression_test ()
stringtools.is_lowercamelcase_string/()
stringtools.is_space_delimited_lowercase_string()
stringtools.is_underscore_delimited_lowercase_file_name ()
stringtools.is_underscore_delimited_lowercase_file_name_with_extension ()
stringtools.is_underscore_delimited_lowercase_package_name ()
stringtools.is_underscore_delimited_lowercase_string()
stringtools.is_uppercamelcase_string ()

3.3. Older versions 29

Abjad Documentation, Release 2.12

stringtools.space_delimited_lowercase_to_uppercamelcase ()
stringtools.string_to_strict_directory_name ()
stringtools.strip_diacritics_from binary_string()
stringtools.underscore_delimited_lowercase_to_lowercamelcase ()
stringtools.underscore_delimited_lowercase_to_uppercamelcase ()
stringtools.uppercamelcase_to_space_delimited_lowercase ()
stringtools.uppercamelcase_to_underscore_delimited_lowercase ()

The package also contains these new functions:

stringtools.arg_to_bidirectional_direction_string/()
stringtools.arg_to_bidirectional lilypond_symbol ()

stringtools.arg_to_tridirectional_direction_string()
stringtools.arg_to_tridirectional lilypond_symbol ()

>>> stringtools.arg_to_bidirectional_lilypond_symbol (1)

r AT

>>> stringtools.arg_to_tridirectional_direction_string(’-")
"neutral’

Added a new beamtools package.
* This release of the beamt ools package contains the following classes and functions:

beamtools.BeamSpanner
beamtools.ComplexBeamSpanner
beamtools.DuratedComplexBeamSpanner
beamtools.MultipartBeamSpanner

beamtools.is_beamable_component
beamtools.apply_beam_spanner_to_measure
beamtools.apply_beam_ spanners_to_measures_in_expr
beamtools.apply_complex_beam_spanner_to_measure
beamtools.apply_complex_beam_spanners_to_measures_in_expr
beamtools.apply_durated_complex_beam_spanner_to_measures
beamtools.beam_bottommost_tuplets_in_expr
beamtools.get_beam_spanner_attached_to_component
beamtools.is_beamable_component
beamtools.is_component_with_beam_spanner_attached

Note that the following two functions have been removed:

beamtools.apply_beam_spanner_to_measure ()
beamtools.apply_complex_beam_spanner_to_measure ()

Use these two functions instead:

beamtools.apply_beam_ spanners_to_measures_in_expr ()
beamtools.apply_complex_beam_spanners_to_measures_in_expr ()

New constrainttools functionality is now available.
* Extended the VariableLengthStreamSolver class.

The class now produces more randomly ordered solution sets than before, when in randomized mode. Note
that the solution sets tend to increase in size. Also note that there is an increased performance hit for such
PMC-style randomized constraint solving:

>>> from abjad.tools.constrainttools import x

>>> domain = Domain([1l, 2, 3, 41, 1)

>>> boundary_sum = GlobalConstraint (lambda x: sum(x) < 6)
>>> target_sum = GlobalConstraint (lambda x: sum(x) == 5)
>>> random_solver = VariableLengthStreamSolver (domain,

50 [boundary_sum], [target_sum], randomized=True)

>>> for x in random_solver: x

1]

N Wb
~ .
w NP W

30 Chapter 3. Version history

Abjad Documentation, Release 2.12

[1, 4]

[3, 1, 1]
[2, 1, 2]
[1, 2, 1, 1]
[2, 1, 1, 1]
(2, 2, 1]
[, 1, 1, 2]
(1, 2, 2]
i, i, 1, i, 1]
[1, 1, 3]

[1, 1, 2, 1]

* Randomized the FixedLengthStreamSolvers class.
The class now produces truly randomly ordered solution sets.
New sequence tools are available.
* Added new type- and form-checking predicates to the sequencetools package:

sequencetools.all_are_integer_equivalent_exprs
sequencetools.is_null_tuple (expr)
sequencetools.is_singleton (expr)
sequencetools.is_pair (expr)
sequencetools.is_n_tuple (expr, n)
sequencetools.is_integer_singleton (expr)
sequencetools.is_integer_pair (expr)
sequencetools.is_integer_n_tuple (expr, n)
sequencetools.is_integer_equivalent_n_tuple
sequencetools.is_integer_equivalent_pair
sequencetools.is_integer_equivalent_singleton
sequencetools.is_fraction_equivalent_pair

Each function returns a boolean:

>>> sequencetools.is_integer_singleton((19,))
True

* Added a new NonreducedFraction class to the sequencetools package:

>>> sequencetools.NonreducedFraction (3, 6)
NonreducedFraction (3, 6)

Like built-in fraction but numerator and denominator do NOT simplify.
All six comparators are implemented on nonreduced fractions.
Addition and subtraction are implemented on nonreduced fractions:

>>> sequencetools.NonreducedFraction (3, 6) + sequencetools.NonreducedFraction (3, 6)
NonreducedFraction (6, 6)

Use nonreduced fractions to model arithmetic operations on time signature-like objects absent any of the
special time signature features like partial-measure pick-ups.

New spanners and spanner handlers are now available.
* Added a ComplexGlissandoSpanner to the spannertools package.

This spanner generates a glissando which skips over rests. It can be used in combination with spanner-
tools.BeamSpanner and an override of the Stem grob to generate the appearance of durated glissandi:

>>> staff = Staff("c’16 [d" r e r r r g’ 1")

>>> f (staff)
\new Staff {
c’le [
d’1le
rl6
e’l6
rl6
rl6

3.3. Older versions 31

Abjad Documentation, Release 2.12

rl6
g’le]

>>> spannertools.ComplexGlissandoSpanner (staff[:])
ComplexGlissandoSpanner (c’16, d’16, rlé6, e’l6, rle, rle,

>>> staff.override.stem.stemlet_length = 2
>>> f (staff)
\new Staff \with {

\override Stem #’stemlet-length = #2

c’16 [\glissando
d’16 \glissando

\once \override NoteColumn #’glissando-skip = ##t
\once \override Rest #’transparent = ##t

rl6

e’16 \glissando

\once \override NoteColumn #’glissando-skip = ##t
\once \override Rest #’transparent = ##t

rlé

\once \override NoteColumn #’'glissando-skip = ##t
\once \override Rest #’transparent = ##t

rl6

\once \override NoteColumn #’glissando-skip = ##t
\once \override Rest #’transparent = ##t

rlé

g’le]

¢ Added new spannertools function:

g’16)

spannertools.destory_spanners_attached_to_components_in_expr (expr, klass=None)

The function can be useful for removing all spanners when debugging a complex expression.

* Spanners are now callable:

>>> staff = Staff("c’8 d’8 e’8 £78")

>>> beam = spannertools.BeamSpanner ()
>>> beam(staff[:])
Staff{4}

>>> f (staff)
\new Staff {
c’8 [
d’s
e’8
£8 1

This works the same way as marks:

>>> marktools.Articulation(’.’) (staff[1]
Articulation(’.’) (d’8)

>>> f (staff)
\new Staff {
c’8 [
d’8 -\staccato
e’8
£/8]

Callable spanners are provided as an experimental way of unifying the attachment syntax of spanners and

marks.
Many new functions are available in the componenttools package.

* New getters:

32

Chapter 3. Version history

Abjad Documentation, Release 2.12

componenttools
componenttools
componenttools
componenttools
componenttools
componenttools
componenttools
componenttools
componenttools
componenttools
componenttools
componenttools
componenttools
componenttools
componenttools
componenttools

.get_proper_contents_of_component ()
.get_improper_contents_of_component ()
.get_improper_contents_of_component_that_start_with_component ()
.get_improper_contents_of_component_that_stop_with_component ()
.get_proper_descendents_of_component ()
.get_improper_descendents_of_component ()
.get_improper_descendents_of_component_that_cross_prolated_offset
.get_improper_descendents_of_ component_that_start_with_ component
.get_improper_descendents_of_component_that_stop_with_component
.get_lineage_of_component ()
.get_lineage_of_component_that_start_with_component ()
.get_lineage_of_component_that_stop_with_component ()
.get_nth_sibling_from_component (component,
.get_nth_component_from_component_in_time_order (component,
.get_nth_namesake_from_component
.get_most_distant_sequential_container_in_improper_parentage_of_component ()

n)
n)

Use these functions to interrogate the structural relations of components resident inside arbitrarily complex

pieces of score.

The functions are useful as primitive methods when implementing more complex operations designed to
mutate the score tree.

Note the difference between the ‘contents’ of a component and the ‘descendents’ of a component:

>>> componenttools.get_proper_contents_of_ component (staff)

[Note ("c"4"),

Versus:

Tuplet (2/3,

[d"8, e’"8, £78])]

>>> componenttools.get_proper_descendents_of_component (staff)

[Note("c’4"),

Tuplet (2/3,

[d"8, e’"8, £’8]), Note("d’8"), Note("e’8"), Note("f’8")]

Also add the following componenttools predicate:

componenttools.

is_immediate_temporal_successor_of_component ()

Further new functionality:

¢ Added new gracetools function:

gracetools.detach_grace_containers_attached_to_leaves_in_expr ()

Use the function to strip all grace containers from an arbitrary piece of score.

Added new marktools functions:

marktools.get_marks_attached_to_components_in_expr ()
marktools.detach_marks_attached_to_components_in_expr ()

marktools.move_marks (donor,

recipient) .

Added new pitchtools function:

pitchtools.set_;

written_pitch_of_pitched_components_in_expr (expr, written_pitch=0)

Use the function to neutralize pitch information in an arbitrary piece of score.

Added new tuplettools functions:

tuplettools.change_fixed_duration_tuplets_in_expr_to_tuplets ()
tuplettools.change_tuplets_in_expr_to_fixed duration_tuplets ()

Extended 1ilypondfiletools.ContextBlock with the following attributes:

ContextBlock.

engraver_consists

ContextBlock.engraver_removals
ContextBlock.context_name
ContextBlock.name
ContextBlock.type

The attributes correspond to backslash-initiated LilyPond commands available in LilyPond context blocks.

Older versions

33

Abjad Documentation, Release 2.12

e Updated LilyPondLanguageToken to format LilyPond \language command instead of LilyPond
\include command.

» Extended Duration to initialize from LilyPond duration strings:

>>> Duration(’8.7)

Duration (3,

16)

Note that this means that Duration(’2’) now gives Duration(l, 2). Previously

Duration (’

2") gave Duration (2, 1) justlike Fraction(’2").

Changes to end-user functionality:

Changed:

componenttools.copy_components_and_remove_all_spanners ()

componenttools.copy_components_and_remove_spanners ()

Changed:

componenttools.get_improper_contents_of_component_that_cross_prolated_offset ()

componenttools.get_leftmost_components_with_total_duration_at_most ()

Changed:

componenttools.list_improper_contents_of_component_that_cross_prolated_offset ()

componenttools.list_leftmost_components_with_prolated_duration_at_most ()

Changed:

configurationtool.set_default_accidental_spelling()

pitchtools.set_default_accidental_spelling ()

Changed:

gracetools.Grace

gracetools.GraceContainer

Changed:

spannertools.

spannertools.

Changed:

spannertools

spannertools.

Changed:

spannertools.

spannertools.

Changed:

spannertools.

spannertools.

Changed:

destory_all_spanners_attached_to_component ()

destory_spanners_attached_to_component ()

.fracture_all_spanners_attached_to_component ()

fracture_spanners_attached_to_component ()

report_as_string format_contributions_of_all spanners_attached_to_component ()

report_as_string format_contributions_of_spanners_attached_to_component ()

report_as_string format_contributions_of_all_spanners_attached_to_improper_parentage_of_com

report_as_string format_contributions_of_spanners_attached_to_improper_parentage_of_compone:

34

Chapter 3. Version history

Abjad Documentation, Release 2.12

tietools.

tietools

* Changed:

tietools.

tietools.

¢ Changed:

get_tie_chains_in_expr ()

.get_nontrivial_tie_chains_masked_by_components ()

remove_all_ leaves_in_tie_chain_except_first ()

remove_nonfirst_leaves_in_tie_chain ()

scr/devel/rename-public-helper

scr/devel/rename-public-function

* Removed the threadtools package and moved all functions to componenttools.

Instead of these:

threadtools.iterate_thread_backward_from_component ()
threadtools.iterate_thread backward_in_expr ()
threadtools.iterate_thread_ forward_from_component ()
threadtools.iterate_thread forward in_expr ()
threadtools.component_to_thread_signature ()

Use these:

componenttools.iterate_thread backward_from_component ()
componenttools.iterate_thread_backward_in_expr ()
componenttools.iterate_thread forward_from_component ()
componenttools.iterate_thread_forward_in_expr ()
componenttools.component_to_containment_signature ()

* Removed the read-only Component .marks property entirely.

* Removed the top-level abjad/exceptions directory. Use the new exceptiontools package in-

stead.

* Removed the top-level abjad/templates directory.

Make sure to read the changes carefully.

If you have been working with grace notes, for example, you will need to change all occurrences of
gracetools.Grace to gracetools.GraceContainer.

3.3.3 Abjad 2.8

Released 2012-04-16. Built from r5421. Implements 306 public classes and 1037 functions totalling 178,000

lines of code.

Many documentation improvements appear in this release.

* A source link now accompanies all classes and functions in the API:

3.3. Older versions

35

Abjad Documentation, Release 2.12

Source code for abjad.tools.chordtools.arpeggiate_chord

from abjad.tools.chordtools.Chord import Chord
from abjad.tools.decoratortools import requires

@requires (Chord)
def arpeggiate chord(chord): [does]
‘*''.. versionadded:: 1.1

Arpeggiate “chord™::

abjad> chord = Chord{"<e"' d'" ef''>8")

abjad> chordtools.arpeggiate chord(chord)
[Note("c'8"), Note("d''8"), Note({"ef''8")]

Arpeggiated notes inherit “chord™ written duration.
Arpeggiated notes do not inherit other “chord”™ attributes.
Return list of newly constructed notes.

. versionchanged:: 2.0
renamed °~~chordtools.arpeggiatef) ™ to
" “ehordtools.arpeggiate chord()"".

P

from abjad.tools.notetools.Note import HNote

result = []

chord_written_duration = chord.written duration

for pitech in chord.written pitches:
result.append(Mote(pitch, chord written duration))

return result

* All parts of the Abjad codebase are now viewable through the HTML version of the API.

* Inheritance diagrams now accompany all classes:

36

Chapter 3. Version history

Abjad Documentation, Release 2.12

abjad.tools.abctools.AbjadObject

abjad.tools.componenttools.Component

abjad.tools.leaftools.Leaf

abjad.tools.resttools.Rest

abjad.tools.resttools.MultiMeasureRest

¢ Inherited attributes now appear in the API entry of each class.
e Added new documentationtools package:

documentationtools.APICrawler
documentationtools.AbjadAPIGenerator
documentationtools.ClassCrawler
documentationtools.ClassDocumenter
documentationtools.Documenter
documentationtools.FunctionCrawler
documentationtools.FunctionDocumenter
documentationtools.InheritanceGraph
documentationtools.ModuleCrawler
documentationtools.Pipe

The package houses custom code to build Abjad documentation.
Added the new constrainttools APL
* This release of the constrainttools package implements the following classes:

constrainttools.AbsoluteIndexConstraint
constrainttools.Domain
constrainttools.FixedLengthStreamSolver
constrainttools.GlobalConstraint
constrainttools.GlobalCountsConstraint
constrainttools.GlobalReferenceConstraint
constrainttools.RelativeCountsConstraint
constrainttools.RelativeIndexConstraint
constrainttools.VariableLengthStreamSolver

* Example:

>>> from abjad.tools.constraintstools import =

3.3. Older versions 37

Abjad Documentation, Release 2.12

>>> domain = Domain([1, 2, 3, 4], 4)

>>> all _unique = GlobalCountsConstraint (lambda x: all([y == 1 for y in x.values()]))
>>> max_interval = RelativeIndexConstraint ([0, 1], lambda x, y: abs(x - y) < 3)

>>> solver = FiniteStreamSolver (domain, [all_unique, max_intervall)

>>> for solution in solver: print solution

~

~

~

~

~

B DWW NN R R
~
WWNDND PSP WWNN
NHE WERE DD WWSNS W
PN R WE S RSN W

~

e The constrainttools package is considered unstable and will be subject to changes in the next releases
of Abjad.

Added octave-transposition mapping model.
* This version of the system contains the following classes:
pitchtools.OctaveTranspositionMapping

pitchtools.OctaveTranspositionMappingComponent
pitchtools.OctaveTranspositionMappingInventory

» Octave-transposition mappings specify a way to maybe pitches from one registral space to another.
 Use octave-transposition mappings as inputtopitchtools.transpose_chromatic_pitch_number_ty_octave
Many Abjad classes are now implemented as abstract base classes.
» Abstract base classes provide functionality to child subclasses.
¢ Abstract base classes can not be instantiated directly.
» The Abjad API now lists abstract classes and concrete classes separately.
* See http://docs.python.org/library/abc.html for a description of ABCs in Python.
Added the new abctools package to house abstract classes that are core to the Abjad object model.
* This version of the package contains the following classes:
abctools.AbjadObject
abctools.AttributeEqualityAbjadobject

abctools.ImmutableAbjadObject
abctools.SortableAttributeEqualityAbjadObject

¢ All Abjad classes now inherit from AbjadOb ject.
Added object inventories for several classes.
* This release contains inventories for the following classes:

contexttools.ClefMarkInventory
contexttools.TempoMarkInventory
instrumenttools.InstrumentInventory
markuptools.MarkupInventory
pitchtools.OctaveTranspositionMappingInventory
pitchtools.PitchRangeInventory
scoretools.PerformerInventory

* Object inventories model ordered collections of system objects.

Add the new datastructuretools package.

38 Chapter 3. Version history

http://docs.python.org/library/abc.html

Abjad Documentation, Release 2.12

* This version of the package includes the following classes:
datastructuretools.Digraph

datastructuretools.ImmutableDictionary
datastructuretools.ObjectInventory

* Use datastructuretools.Digraph to detect cycles in any collection of hashable objects:

>>> from abjad.tools.datastructuretools import Digraph

>>> edges = [('a’, 'b"), ("a’', 'c’"), (a’, "£'), (/c', 'd"), ('d’, 'e"), ('e’', 'c’)]
>>> digraph = Digraph (edges)

>>> digraph

Digraph (edges=[("a’, 'c’"), ("a’, 'b"), ('a’', '"£"), (‘c', 'd"), (4", ’'e"), (e, 'c’)])

>>> digraph.root_nodes

("a’,)

>>> digraph.terminal_nodes
("b", "£")

>>> digraph.cyclic_nodes
(fc’, 'd", "e’")

>>> digraph.is_cyclic

True

e Usedatastructuretools.ObjectInventory asthe base class for an ordered collection of system
objects.

¢ Object inventories inherit from 1ist and are mutable.
* Object inventories extend append (), extend () and ___contains__ () to allow token input.
Added new wellformednesstools package.
 This version of the package implements the following classes:
wellformednesstools
wellformednesstools

wellformednesstools
wellformednesstools

.BeamedQuarterNoteCheck
.DiscontiguousSpannerCheck
.DuplicateIdCheck
.EmptyContainerCheck

wellformednesstools.
.MisduratedMeasureCheck
.MisfilledMeasureCheck

wellformednesstools
wellformednesstools

wellformednesstools.

wellformednesstools
wellformednesstools
wellformednesstools
wellformednesstools
wellformednesstools
wellformednesstools

IntermarkedHairpinCheck

MispitchedTieCheck

.MisrepresentedFlagCheck
.MissingParentCheck
.NestedMeasureCheck
.OverlappingBeamCheck
.OverlappingGlissandoCheck
.OverlappingOctavationCheck
wellformednesstools.

ShortHairpinCheck

* The classes check different aspects of score well-formedness.

e To call these classes use wellformednesstools.is_well_ formed_component ()
wellformednesstools.tabulate_well_ formedness_violations_in_expr ().

or

Added new decoratortools package.
* This version of the package contains only the requires decorator.

e The requires decorator will be used in later versions of Abjad to specify the input and output types of
functions explicitly.

* This will help in the construction of function- and class-population tools.
Added new scoretemplatetools package.
* This version of the package implements the following classes:

scoretemplatetools.StringQuartetScoreTemplate
scoretemplatetools.TwoStaffPianoScoreTemplate

3.3. Older versions 39

Abjad Documentation, Release 2.12

* Example:

>>> from abjad.tools import scoretemplatetools

>>> template = scoretemplatetools.StringQuartetScoreTemplate ()

>>> score = template ()

>>> score
Score-"String Quartet Score"<<1>>

>>> f (score)

\context Score = "String Quartet Score" <<
\context StaffGroup = "String Quartet Staff Group"

\context Staff = "First Violin Staff" ({
\clef "treble"
\context Voice = "First Violin Voice"
}

}

\context Staff = "Second Violin Voice"

\clef "treble"

}

\context Staff = "Viola Staff" ({
\clef "alto"

}

\context Staff = "Cello Staff" {
\clef "bass"

>>
>>

* Class usage follows a two-step initialize-then-call pattern.

Added new rhythmtreetools package for parsing IRCAM-like RTM syntax.

 This version of the package implements the following function:

rhythmtreetools.parse_rtm_syntax.parse_rtm_syntax()

* Example:

>>> from abjad.tools.rhythmtreetools import parse_rtm_syntax

>>> rtm = 7 (1 (1 (1 (1 1)) 1))"
>>> result = parse_rtm_syntax (rtm)
>>> result

FixedDurationTuplet (1/4, [c’8, c’16, c’'l1l6, c’8])

e Use the rhythmtreetools package to turn nested lists of numbers into Abjad tuplets.

Added new rhythmmakertools package.

* This version of the package contains the following concrete classes:

rhythmmakertools.NoteRhythmMaker

rhythmmakertools.OutputBurnishedTaleaRhythmMaker

rhythmmakertools.OutputIncisedNoteRhythmMaker
rhythmmakertools.OutputIncisedRestRhythmMaker
rhythmmakertools.RestRhythmMaker
rhythmmakertools.TaleaRhythmMaker

rhythmmakertools.DivisionBurnishedTaleaRhythmMaker

rhythmmakertools.DivisionIncisedNoteRhythmMaker
rhythmmakertools.DivisionIncisedRestRhythmMaker

* The rhythmmakertools package implements a family of related rhythm-making classes.

¢ Class usage follows a two-step initialize-then-call pattern.

Added new classes to instrumenttools.

¢ Added human voice classes:

40

Chapter 3. Version history

Abjad Documentation, Release 2.12

instrumenttools.BaritoneVoice
instrumenttools.BassVoice
instrumenttools.ContraltoVoice
instrumenttools.MezzoSopranoVoice
instrumenttools.SopranoVoice
instrumenttools.TenorVoice

Added new time-interval tree functionality:

Extended TimeIntervalTree with the following public methods:

scale_by_rational ()
scale_to_rational ()
shift_by_rational ()
shift_to_rational ()
split_at_rationals()

These methods allow time-interval trees to behave more similary to time-intervals.

All score components are now public.

The following classes are now publically available for the first time:

componenttools.Component
contexttools.Context
leaftools.Leaf

Further new functionality:

Added the marktools.BendAfter class to model LilyPond’s \bendAfter command:

>>> n = Note (0, 1)

>>> marktools.BendAfter (8) (n)
BendAfter (8.0) (c’1)

>>> f(n)

c’1l - \bendAfter #78.0

Added public pair property to contexttools.TimeSignatureMark:

>>> time_signature = contexttools.TimeSignatureMark ((3, 16))
>>> time_signature.pair
(3, 16)

Added is_hairpin_token () to spannertools.HairpinSpanner class.

Hairpin tokens are triples of the form (x, vy, z) with dynamic tokens x, y and hairpin shape string z.
For example ('p’, ’'<’, "f’).

Added resttools.replace_leaves_in_expr_with_rests().
Added leaftools.replace_leaves_in_expr_with_parallel_voices ().
Added leaftools.replace_leaves_in_expr_with_named_parallel_voices ().

Use the functions listed above to replace leaves in an expression with parallel voices containing copies of
those leaves in both voices. This is useful for generating stemmed-glissandi structures.

Added contexttools.list_clef names():

>>> contexttools.list_clef_names|()
["alto’, ’'baritone’, ’bass’, ’'mezzosoprano’, ’'percussion’, ’'soprano’, ’‘treble’]

Added find-slots-implementation-inconsistencies development script.

Changes to end-user functionality:

Changed intervaltreetoolstotimeintervaltools.
Changed contexttools.Context.context to contexttools.Context.context_name.

Calling bool (Container ()) on empty containers now returns false. The previous behavior of the
system was to return true. The new behavior better conforms to the Python iterable interface.

3.3. Older versions 41

Abjad Documentation, Release 2.12

¢ Moved abjad/docs/scr/make—abjad—-api to abjad/scr/make-abjad-api.

3.3.4 Abjad 2.7

Released 2012-02-27. Built from r5100. Implements 221 public classes and 1029 functions totalling 168,000
lines of code.

e Added lilypondparsertools.LilyPondParser class, which arses a subset of LilyPond input

syntax:

>>> from abjad.tools.lilypondparsertools import LilyPondParser
>>> parser = LilyPondParser()
>>> input = r"\new Staff { c’4 (d’'8 e’ fs’2) \fermata }"
>>> result = parser (input)
>>> f (result)
\new Staff {
c’4 (
d’s
e’8
fs’2 -\fermata)
}

LilyPondParser defaults to English note names, but any of the other languages supported by LilyPond may
be used:

>>> parser = LilyPondParser (’'nederlands’)
>>> input = '{ c des e fis }’
>>> result = parser (input)
>>> f (result)
{
c4d
df4
e4
fs4
}

Briefly, LilyPondParser understands theses aspects of LilyPond syntax:
— Notes, chords, rests, skips and multi-measure rests
— Durations, dots, and multipliers
— All pitchnames, and octave ticks
— Simple markup (i.e. c’4 ~ "hello!")
— Most articulations
— Most spanners, including beams, slurs, phrasing slurs, ties, and glissandi

— Most context types via \new and \context, as well as context ids (i.e. \new Staff = "foo"

{1
— Variable assignment (i.e. global = { \time 3/4 } \new Staff { \global })

— Many music functions: - \acciaccatura - \appoggiatura - \bar - \breathe - \clef
- \grace - \key - \transpose - \language - \makeClusters - \mark - \oneVoice -
\relative - \skip - \slashedGrace - \time - \times - \transpose - \voiceOne,
\voiceTwo, \voiceThree, \voiceFour

LilyPondParser currently DOES NOT understand many other aspects of LilyPond syntax:

\markup

\book, \bookpart, \header, \layout, \midi and \paper

\repeat and \alternative

Lyrics

\chordmode, \drummode or \ figuremode

42

Chapter 3. Version history

Abjad Documentation, Release 2.12

— Property operations, such as \override, \revert, \set, \unset, and \once
— Music functions which generate or extensively mutate musical structures
— Embedded Scheme statements (anything beginning with #)

e Added iotools.p(), for conveniently parsing LilyPond syntax:

>>> result = p(r"\new Staff { c’4 de £ }")
>>> f (result)
\new Staff {

c’4

d4

e4d

f4

* Added schemetools.Scheme, as a more robust replacement for nearly all other schemetools
classes:

>>> from abjad.tools.schemetools import Scheme
>>> print Scheme (True) .format

#H#t

>>> print Scheme(’a’, ’list’, ’'of’, ’strings’).format

#(a list of strings)

>>> print Scheme ((’simulate’, ’a’, ’vector’), quoting=""#").format
#’# (simulate a vector)

>>> print Scheme(’a’, ('nested’, (’data’, ’'structure’))).format

#(a (nested (data structure))

* Removed deprecated schemetools classes:

SchemeBoolean

SchemeFunction

SchemeNumber

SchemeString

SchemeVariable

In all cases, simply use schemetools.Scheme instead.
* Reimplemented MarkupCommand.

The new implementation is initialized from a command-name, and a variable-size list of arguments. Argu-
ments which are lists or tuples will be enclosed in curly-braces:

>>> from abjad.tools.markuptools import MarkupCommand

>>> bold = MarkupCommand(’bold’, [’'two’, ’"words’])

>>> rotate = MarkupCommand(’rotate’, 60, bold)

>>> triangle = MarkupCommand (’triangle’, False)

>>> concat = MarkupCommand (’concat’, [’one word’, rotate, triangle])
>>> print concat.format

\concat { #"one word" \rotate #60 \bold { two words } \triangle ##f }

* Added contexttools.TempoMarkInventory, which models an ordered list of tempo marks:

>>> contexttools.TempoMarkInventory ([(' Andante’, Duration(l, 8), 72), ('Allegro’, Duration(l, 8), 84)1])
TempoMarkInventory ([TempoMark (' Andante’, Duration(l, 8), 72), TempoMark(’Allegro’, Duraticn(l, 8), 84)])

Inherits from list. Allows initialization, append and extent on tempo mark tokens.
* Added new pitchtools.PitchRangeInventory class.
The class acts as an ordered list of PitchRange objects.

The purpose of the class is to model something like palettes of different pitches available in all part of a
score:

>>> pitchtools.PitchRangeInventory ([’ [C3, C6]’, ' [C4, C6]"])
PitchRangeInventory ([PitchRange (' [C3, C6]’), PitchRange(’ [C4, C6]7)])

3.3. Older versions 43

Abjad Documentation, Release 2.12

The class inherits from list.
Added sequencetools.all_are_pairs () predicate:
>>> from abjad.tools.sequencetools import all_are_pairs

>>> all_are_pairs([(1, 2), (3, 4), (5, 6)1)
True

Added sequencetools.all_are_pairs_of_types () predicate:

>>> from abjad.tools.sequencetools import all_are_pairs_of_types
>>> all_are_pairs_of_types([('a’, 1.4), ("b’, 2.3), ('c’, 1.5)], str, float)
True

Added stringtools.is_underscore_delimited_lowercase_file_name_with_extension ()

string predicate:

>>> stringtools.is_underscore_delimited_lowercase_file_name_with_extension(’ foo bar.blah’)
True

Added iotools.is_underscore_delimited_file_name () string predicate.
Returns true on any underscore-delimited lowercase string.
Also returns trun on an underscore-delimtied lowercase string terminated with an extension.

>>> stringtools.is_underscore_delimited_lowercase_file_name (' foo_bar.py’)
True

>>> stringtools.is_underscore_delimited_lowercase_file_name ('’ foo_bar’)
True

Added ImpreciseTempoError to exceptions.
Added LilyPondParserError to exceptions.

Added scr/devel/fix-test-cases. The script is a two-line wrapper around the following other
two scripts:

— scr/devel/fix-test—-case—-names
— scr/devel/fix-test—-case—numbers
Extended Container touse LilyPondParser to parse input strings.

Extended contexttools.InstrumentMark, scoretools.Performer and
markuptools.Markup with__hash___ equality.

Now, if two instances compare equally (via ==), their hashes also compare equally, allowing for more
intuitive use of these classes as dictionary keys.

Extended contexttools.TempoMark with textual indications and tempo ranges You may instantiate
as normal, or in some new combinations:

>>> from abjad.tools.contexttools import TempoMark
>>> t = TempoMark (' Langsam’, Duration(l, 4), (52, 57)
>>> t = TempoMark (' Langsam’)

>>> t TempoMark ((1, 4), (52, 57))

In addition to its new read/write “textual_indication” attribute, TempoMark now also exposes a read-
only “is_imprecise” property, which returns True if the mark cannot be expressed simply as dura-
tion=units_per_minute. Arithmetic operations on TempoMarks will now raise ImpreciseTempoErrors if
any mark involved is imprecise.

Extended tempo marks to be able to initialize from ‘tempo mark tokens’. A tempo mark token is a length-2
or length-3 tuple of tempo mark arguments.

Extended tempo mark with is_tempo_mark_token () method:
>>> tempo_mark = contexttools.TempoMark (Duration(l, 4), 72)

>>> tempo_mark.is_tempo_mark_token ((Duration(l, 4), 84))
True

44

Chapter 3. Version history

Abjad Documentation, Release 2.12

» Extended case-testing iotools string predicates to allow digits.
Functions changed:

— stringtools.is_space_delimited_lowercase_string
— stringtools.is_underscore_delimited_lowercase_file_name
- stringtools.is_lowercamelcase_string
- stringtools.is_uppercamelcase_string
— stringtools.is_underscore_delimited_lowercase_string
— stringtools.is_underscore_delimited_lowercase_file_name_with_extension

e Extended 1ilypondfiletools.NonattributedBlock with is_formatted_when_empty
read-write property. 1ilypondfiletools.ScoreBlock no longer formats when empty, by default.

e Extended marktools.BarLine with format_slot keyword.

e Extended pitchtools.PitchRange class with read-only pitch_range_name and
pitch_range_name_markup attributes.

» Extended scoretools.InstrumentationSpecifier with read-only
performer_name_string attribute.

Extended all beamtools.Beam—, Slur— and Hairpin-'‘related spanner classes, as
well as ‘‘tietools.TieSpanner' with an optional ‘‘direction keyword:

>>> c = Container("c’4 d’'4 e’4 f’'4")

>>> spanner = spannertools.SlurSpanner(c[:], ’"up’)
>>> f(c)

{
4~

’

Hh O Q Q
BSOS

}

The direction options are exactly the same as for Articulation and Markup: ‘up’, ' ', ' down’,
! _’,’neutral’,’~-’ and None.

¢ Extendedtonalitytools.Scale withcreate_named_chromatic_pitch_set_in_pitch_range ()
method.

* Changed tuplettools.FixedDurationTuplet .multiplier to return fraction instead of dura-
tion.

* Renamed attributes, methods and functions throughout intervaltreetools:
— centroid => center (except where a weighted mean is actually used)
— high =>stop‘‘
— high_min => earliest_stop**
— high_max => latest_stop‘*
— low=>start
— low_min=>earliest_start
— low_max =>latest_start
- magnitude =>duration

This both clarifies the API, and prevents shadowing of Python’s builtin min () and max ().

¢ Renamed marktools.Articulation.direction_string =>
marktools.Articulation.direction.

¢ Renamedmarkuptools.Markup.direction_string' => ‘‘markuptools.Markup.direction.

3.3. Older versions 45

Abjad Documentation, Release 2.12

Renamed tuplettools.Tuplet.ratioto tuplettools.Tuplet.ratio_string.

Renamed scr/devel/find-nonalphabetized-method-names to
scr/devel/find-nonalphabetized-class—-attributes.

Improved scr/devel/find-nonalphabetzied-methods.

Updated literature examples to match API changes.

Removed ancient stafftools.make_invisible_staff ().

Added text_editor key to user config dictionary (in ~/ .abjad/config.py).
Improved __repr__ strings of tonalitytools.Mode and tonalitytools.Scale.

contexttools.TempoMark __repr__ now shows ___repr___ version of duration instead of string
version of duration.

scr/devel/abj—-grp no longer excludes lines of code that include the string * svn’ .

3.3.5 Abjad 2.6

Released 2012-01-29. Built from r4979. Implements 197 public classes and 941 public functions totalling 153,000
lines of code.

* Added top-level decorators directory with requires decorator. The requires decorator renders

the following two function definitions equivalent:

from abjad.tools.decoratortools import requires

@requires (int)
def foo (x):
return x *x* 2

def foo(x):
assert isinstance(x, int)
return x ** 2

Added new classes to scoretools:

scoretools.InstrumentationSpecifier
scoretools.Performer

Added scoretools.list_performer_names():

>>> for name in scoretools.list_performer_names () [:10]:
name

"accordionist’
"bassist’
"bassoonist’
'cellist’
’clarinetist’
rflutist’
"guitarist’
"harpist’
"harpsichordist’
"hornist’

Added scoretools.list_primary_performer_names ().
Added measuretools.measure_to_one_line_input_string():

>>> measure = Measure ((3, 4), "cd4 d4 ed")

>>> measure
Measure (3/4, [c4, d4, ed])

46

Chapter 3. Version history

Abjad Documentation, Release 2.12

>>> measuretools.measure_to_one_line_input_string(measure)
"Measure ((3, 4), ’'c4 d4 e4’)"

Added new classes to instrumenttools:

SopraninoSaxophone
SopranoSaxophone
AltoSaxophone
TenorSaxophone
BaritoneSaxophone
BassSaxophone
ContrabassSaxophone

ClarinetInA

AltoTrombone
BassTrombone

Harpsichord

Added known untuned percussion:

>>> for name in instrumenttools.UntunedPercussion.known_untuned_percussion[:10]:

print name
agogd
anvil
bass drum
bongo drums
cabasa
cajoén
castanets
caxixi
claves
conga drums

Added _TInstrument.get_default_performer_name ():

>>> bassoon = instrumenttools.Bassoon ()

>>> bassoon.get_default_performer_name ()
"bassoonist’

Added _TInstrument.get_performer_names ():

>>> bassoon.get_performer_names ()

[’instrumentalist’, ’reed player’, ’'double reed player’, ’bassoonist’]

Added read / write _Instrument .pitch_range:

>>> marimba.pitch_range = (-24, 36)
>>> marimba.pitch_range
PitchRange (' [C2, CT7]")

Added read-only _Instrument.traditional_pitch_range:

>>> marimba = instrumenttools = instrumenttools.Marimba ()
>>> marimba.traditional_pitch_range
PitchRange (’ [F2, C7]1")

Added instrumenttools.list_instruments():

>>> for instrument_name in instrumenttools.list_instrument_names () [:10]:

instrument_name

’accordion’

"alto flute’

"alto saxophone’
"alto trombone’
"clarinet in B-flat’

3.3. Older versions

47

Abjad Documentation, Release 2.12

"baritone saxophone’
"bass clarinet’
"bass flute’

"bass saxophone’
"bass trombone’

e Added other functions to instrumenttools:

instrumenttools.list_primary_instrument_names ()
instrumenttools.list_secondary_instrument_names ()

¢ Added new class to 1ilypondfiletools:

ContextBlock

¢ Added pitchtools.is_symbolic_pitch_range_string():

>>> pitchtools.is_symbolic_pitch_range_string(’ [A0, C8]")
True

¢ Addedpitchtools.pitch_class_octave_number_string_ to_chromatic_pitch_name ():

>>> pitchtools.pitch_class_octave_number_string to_chromatic_pitch_name ('A#4")

nggrm

¢ Addedpitchtools.symbolic_accidental_string_to_alphabetic_accidental_string_abbreviat

>>> pitchtools.alphabetic_accidental_ abbreviation_to_symbolic_accidental_string(’tgs’)
4 #+l

¢ Added other new functions to pitchtools:
pitchtools.alphabetic_accidental_abbreviation_to_symbolic_accidental_string()

pitchtools.is_smbolic_accidental_string()
pitchtools.is_pitch_class_octave_number_string ()

¢ Added stringtools.string_to_strict_directory_name ():

>>> stringtools.string_to_strict_directory_name (’Déja wvu’)
"deja_vu’

e Added stringtools.strip_diacritics_from_ _binary_string():

>>> binary_string = ’'Dvorak’
>>> stringtools.strip_diacritics_from_binary_string(binary_string)
"Dvorak’

¢ Added other new functions to iotools:

stringtools.capitalize_string_start ()
iotools.is_space_delimited_lowercamelcase_string()
iotools.is_underscore_delimited_lowercamelcase_package_name ()
iotools.is_underscore_delimited_lowercamelcase_string()
stringtools.is_lowercamelcase_string ()
stringtools.is_uppercamelcase_string/()
stringtools.space_delimited_lowercase_to_uppercamelcase ()
stringtools.uppercamelcase_to_space_delimited_lowercase ()
stringtools.uppercamelcase_to_underscore_delimited_lowercase ()

¢ Added new functions to mathtools:

mathtools.is_positive_integer_power_of_two ()
mathtools.is_integer_equivalent_expr ()

* Added sequence type-checking predicates:

chordtools.all_are_chords ()
containertools.all_are_containers ()
durationtools.all_are_duration_tokens ()
durationtools.all_are_durations()
gracetools.all_are_grace_containers (

48 Chapter 3. Version history

Abjad Documentation, Release 2.12

leaftools.all_are_leaves ()
markuptools.all_are_markup ()
measuretools.all_are_measures ()
notetools.all_are_notes ()
pitcharraytools.all_are_pitch_arrays/()
pitchtools.all_are_named_chromatic_pitch_tokens ()
resttools.all_are_rests()
scoretools.all_are_scores ()
sievetools.all_are_residue_class_expressions ()
skiptools.all_are_skips()
spannertools.all_are_spanners ()
stafftools.all_are_staves|()
tuplettools.all_are_tuplets ()

Extended NamedChromaticPitch to allow initialization from pitch-class / octave number strings:

>>> pitchtools.NamedChromaticPitch (/' C#2")
NamedChromaticPitch (’cs,’)

Extended PitchRange to allow initialization from symbolic pitch range strings:

>>> pitchtools.PitchRange (' [AO, C8]")
PitchRange (' [A0, C8]1")

Extended PitchRange to allow initialization from pitch-class / octave number strings:

>>> pitchtools.PitchRange ('A0’, ’'C8")
PitchRange (' [A0, C8]1")

Extended leaftools.is_bar_line_crossing_leaf () to work when no explicit time signature
mark is found.

Extended Markup to be able to function as a top-level Li 1lyPondFile element.

Extended instruments with is_primary and is_secondary attributes.

Extended instruments with inst rument_name and instrument_name_markup attributes.

Extended instruments with short_instrument_name and short_instrument_name_markup
attributes.

Extended iotools.write_expr_to_ly() and iotools.write_expr_to_pdf () with
"tagline’ keyword.

Extended replace-in-files script to skip .text, .1y and . txt files.

Renamed Accidental.symbolic_stringtoAccidental.symbolic_accidental_string.

Renamed Accidental.alphabetic_stringtoAccidental.alphabetic_accidental_abbreviation.
Fixed bugin iotools.play ().

Fixed bug in quantizationtools regarding quantizing a stream of QEvent s directly.

3.3.6 Abjad 2.5

Released 2011-09-22. Built from r4803.

Added get_leaf_in_expr_with_minimum_duration () functionto leaftools.
Added get_leaf_in_expr_with_maximum_duration () functionto leaftools.
Added are_relatively_prime () function to mathtools.

Added CyclicTree class to sequencetools.

Added get_next_n_nodes_at_leve (n, level) methodto sequencetools.Tree.
Extended spanners to sort by repr.

Renamed 1ilyfiletoolsto lilypondfiletools.

3.3. Older versions 49

Abjad Documentation, Release 2.12

e Renamed 1ilyfiletools.LilyFileto lilypondfiletools.LilyPondFile.
* Renamed lilyfiletools.make_basic_lily_ file() tolilypondfiletools.make_basic_lilypond_f

Note that the three renames change user syntax. Composers working with the 1ilypondfiletools module
should update their score code.

3.3.7 Abjad 2.4

Released 2011-09-12. Built from r4769.

* Added Mozart Musikalisches Wuerfelspiel.
Ein Musikalisches Wuerfelspiel
W. A. Mozart I,lnu_\'l'.u.-'.:'J
L

o " F"?!r"‘.'_‘:."!', — st ferefes = = =
s == i "='r-"“""'§E#F|:ﬁ=§= :
HKatzenklavier \) . i ﬂﬁ ——
F f L 3 L & & R ——
B e == == =—="=—sr==E=uis
t —4 = I
[
ol Pie p_pfe NS S e e EP W
1TSS i B G | R | s o s o I I B B B A O
@ 1 - — (e == =
|- P b .. . — 1 L
W e sl S Ippfpfle iF g ilasaifrefie
L === F I | ¥ =

Added new Tree class to sequencetools to work with sequences whose elements have been grouped
into arbitrarily many levels of containment.

Added new BarLine class to marktools package.

Added new HorizontalBracketSpanner to spannertools package.
e Improved schemetools.SchemePair handling.

¢ Extended LilyPondFile blocks with double underscore-delimited attributes.

3.3.8 Abjad 2.3

Released 2011-09-04. Built from r4747.
Filled out the API for working with marks:

marktools.attach_articulations_to_components_in_expr ()
marktools.detach_articulations_attached_to_component ()
marktools.get_articulations_attached_to_component ()
marktools.get_articulation_attached_to_component ()
marktools.is_component_with_articulation_attached()

These five type of functions are now implemented for the following marks:

marktools.Annotation
marktools.Articulation
marktools.LilyPondCommandMark
marktools.LilyPondComment
marktools.StemTremolo

The same type of functions are likewise implemented for the following context marks:

contexttools.ClefMark
contexttools.DynamicMark
contexttools.InstrumentMark
contexttools.KeySignatureMark
contexttools.StaffChangeMark
contexttools.TempoMark
contexttools.TimeSignatureMark

50 Chapter 3. Version history

Abjad Documentation, Release 2.12

* Extended Container.extend() to allow for LilyPond input strings. You can now say
container.extend("c’4 d’'4 e’4 f£'4").

* Added public parent attribute to all components. You can now say note.parent. The attribute is
read-only.

¢ Added cfgtools.list_package_dependency_version ().
* Added py.test and Sphinx dependencies to the Abjad package.

* Added LilyPond command mark chapter to reference manual

* Renamed cfgtoolstoconfigurationtools.

* Renamed durtoolstodurationtools.

¢ Renamed metertools to timesignaturetools.

* Renamed seqtools to sequencetools.

¢ Renamed Mark.attach _mark () toMark.attach ().

e Renamed Mark.detach_mark () toMark.detach ().

e Renamed marktools.Comment to marktools.LilyPondComment. This matches
marktools.LilyPondCommandMark.

e Removed contexttools.TimeSignatureMark (3, 8) initialization. You must now say
contexttools.TimeSignatureMark ((3, 8)) instead. This parallels the initialization syntax for
rests, skips and measures.

3.3.9 Abjad 2.2

Released 2011-08-30. Built from r4677.
* Added articulations chapter to reference manual.
* Reordered the way in which Abjad determines the value of the HOME environment variable.
» Updated scr/devel/replace-in-files to avoid image files.

e Updated iotools.log () to call operating-specific text editor.

3.3.10 Abjad 2.1

Released 2011-08-21. Built from r4655.
* Updated instrument mark repr to display target context when instrument mark is attached.

* Extended scr/abjand scr/abjad to display Abjad version and revision numbers on startup.

3.3.11 Abjad 2.0

Released 2011-08-17. Built from r4638.

Abjad 2.0 is the first public release of Abjad in more than two years. The new release of the system more than
doubles the number of classes, functions and packages available in Abjad.

* The API has been cleaned up and completely reorganized. Features have been organized into a collection
of 39 different libraries:

cfgtools/ instrumenttools/ mathtools/ resttools/ tempotools/
chordtools/ intervaltreetools/ measuretools/ schemetools/ threadtools/
componenttools/ iotools/ metertools/ scoretools/ tietools/
containertools/ layouttools/ musicxmltools/ seqtools/ tonalitytools/
contexttools/ leaftools/ notetools/ sievetools/ tuplettools/

3.3. Older versions 51

Abjad Documentation, Release 2.12

durtools/ lilyfiletools/ pitcharraytools/ skiptools/ verticalitytools/
gracetools/ marktools/ pitchtools/ spannertools/ voicetools/
importtools/ markuptools/ quantizationtools/ stafftools/

* The name of almost every function in the public API has been changed to better indication what the function
does. While this has the effect of making Abjad 2.0 largely non-backwards compatible with code written
in Abjad 1.x, the longer and much more explicit function names in Abjad 2.0 make code used to structure
complex scores dramatically easier to maintain and understand.

e The contexttools, instrumenttools, intervaltreetools, lilyfiletools,
marktools, pitcharraytools, quantizationtools, sievetools, tonalitytools
and verticalitytools packages are completely new.

* The classes implemented in the contexttools and marktools packages provide an object-oriented
interfaces to clefs, time signatures, key signatures, articulations, tempo marks and other symbols stuck to
the outside of the hierarchical score tree. The classes implemented in contexttools and marktools
model information outside the score tree much the way that the classes implemented in spannertools
implement object-oriented interfaces to beams, brackets, hairpins, glissandi and other line-like symbols.

* The instrumenttools package provides an object-oriented model of most of the conventional instru-
ments of the orchestra.

* The intervaltreetools package implements a custom way of working with chunks of score during
composition.

* The 1ilyfiletools package implements an object-oriented interface to arbitrarily structured LilyPond
input files.

52 Chapter 3. Version history

Part 11

Examples

53

CHAPTER
FOUR

BARTOK: MIKROKOSMOS

This example reconstructs the last five measures of Barték’s “Wandering” from Mikrokosmos, volume III. The end
result is just a few measures long but covers the basic features you’ll use most often in Abjad.

Here is what we want to end up with:

ritard.. - _ _ _ _ -
) S — T ——— — o— o T
@hﬁjﬁ:}:@ F=r = =
I ——] - I!'.J'__________'__IE'.J
m" 'ﬂ‘q} —— ——
ozt Fllarrele Tl ———
- ..3:+ —T _;;IH T 1. T—T .in.g:j::jE:ZQEZ;g. o 'b .3...
np mp

4.1 The score

We’ll construct the fragment top-down from containers to notes. We could have done it the other way around but
it will be easier to keep the big picture in mind this way. Later, you can rebuild the example bottom-up as an
exercise.

First let’s create an empty score with a pair of staves connected by a brace:

>>> score = Score([])

>>> piano_staff = scoretools.PianoStaff ([])
>>> upper_staff = Staff([])

>>> lower_staff = Staff([])

>>> piano_staff.append (upper_staff)
>>> piano_staff.append(lower_staff)
>>> score.append (piano_staff)

Here we create an empty score and assign it to the score variable. Then we create an empty piano staff assigned
to the piano_staff variable and two empty staves assigned to the upper_staff and lower_staff vari-
ables. Finally, we append the two staves to the piano staff and the piano staff to the score.

4.2 The measures

Now let’s add some measures to our score:

>>> ml = Measure ((2, 4),
>>> m2 = Measure ((3, 4),

>>> m4 = Measure((2, 4),

[1
[1)
>>> m3 = Measure ((2, 4), [1)
[1)
>>> m5 = Measure((2, 4), [1)

55

Abjad Documentation, Release 2.12

>>> upper_measures = [ml, m2, m3, m4, m5]

>>> lower_measures = componenttools.copy_components_and_covered_spanners (upper_measures)

>>> upper_staff.extend (upper_measures)
>>> lower_staff.extend(lower_measures)

The lower measures are copies of the upper measures.

Note that we add lists of measures to staves with extend (). This is because extend () is used for adding
many objects to an iterable at once while append () is used to add only one object at a time.

4.3 The notes

Now let’s add some notes. We begin with the upper staff:

>>> upper_measures[0] .extend ([Note (i, (1, 8)) for i in [9, 7, 5, 411])
>>> upper_measures|[1] .extend (notetools.make_notes([2, 7, 5, 4, 21, [(1,
>>> notes = notetools.make_notes ([0, 2, 4, 5, 4], [(1, 8), (1, 1l6), (1,

>>> upper_measures[2] .extend (notes)

>>> upper_measures[3].append (Note ("d’2"))

>>> upper_measures[4] .append (Note ("d’2"))

Now let’s add notes to the lower staff. This will be a more intricate process than that needed for the upper staff.
We added notes directly to the measures of the upper staff. But this will not be possible for the lower staff because

of the simultaneous voices the lower staff contains.
We add notes to the lower staff measure by measure:

>>> main_voice_ml = Voice("b4 d’8 c’8")
>>> main_voice_ml.name = 'main_voice’
>>> lower_measures[0] .append (main_voice_ml)

>>> main_voice_m2 = Voice("b8 a8 af4 c’8 bf8")
>>> main_voice_m2.name = 'main_voice’
>>> lower_measures[1l].append (main_voice_m2)

>>> main_voice_m3 = Voice("a8 g8 fs8 gl6 alé")
>>> main_voice_m3.name = 'main_voice’
>>> lower_measures[2] .append (main_voice_m3)

Notice that we give the same name to the three voices contained in the first three measures of the lower staff.

It is in the last two measures of the lower staff where Bartok writes two voices at once. We’ll name the second of

these two voices the appendix_voice:

>>> appendix_voice_m4 = Voice ([Note ("b2")1])

>>> appendix_voice_m4.name = ’appendix_voice’

>>> lilypond_command_mark = marktools.LilyPondCommandMark (' voiceOne’)
>>> lilypond_command_mark.attach (appendix_voice_m4)
LilyPondCommandMark (' voiceOne’) (Voice-"appendix_voice"{1})

>>> main_voice_m4 = Voice("b4 a4d")

>>> main_voice_m4.name = 'main_voice’

>>> lilypond_command_mark = marktools.LilyPondCommandMark ('voiceTwo’)
>>> lilypond_command_mark.attach (main_voice_m4)
LilyPondCommandMark (’ voiceTwo’) (Voice-"main_voice"{2})

>>> container = Container ([appendix_voice_m4, main _voice_m4])
>>> container.is_parallel = True
>>> lower_measures[3] .append (container)

56 Chapter 4. Bartok: Mikrokosmos

Abjad Documentation, Release 2.12

The LilyPond \voiceOne and \voiceTwo commands determine the direction of the stems in different voices.

Note that we must put both voices in a parallel container because they occur at the same time in the score. We do
this by creating an Abjad container and then setting the 1s_parallel attribute of the container to true.

We now do a similar thing for the last measure:

>>> appendix_voice_m5 = Voice ("b2")

>>> appendix_voice_mb.name = ’appendix_voice’

>>> lilypond_command_mark = marktools.LilyPondCommandMark (' voiceOne’)
>>> lilypond_command_mark.attach (appendix_voice_mb)
LilyPondCommandMark (/ voiceOne’) (Voice—-"appendix_voice"{1})

>>> main_voice_m5 = Voice("g2")

>>> main_voice_m5.name = 'main_voice’

>>> lilypond_command_mark = marktools.LilyPondCommandMark (’voiceTwo’)
>>> lilypond_command_mark.attach (main_voice_m5)
LilyPondCommandMark (’ voiceTwo’) (Voice—-"main_voice"{1l})

>>> container = Container ([appendix_voice_m5, main_voice_m5])
>>> container.is_parallel = True
>>> lower_measures[4] .append (container)

Here’s our work so far:

>>> show (score)

™ !
g #» " ' dbd

ﬁ‘
.l

4.4 The details

Ok, let’s add the details. First, notice that the bottom staff has a treble clef just like the top staff. Let’s change that:

>>> contexttools.ClefMark ('bass’) (lower_staff)
ClefMark ("bass’) (Staff{5})

Now let’s add dynamic marks. For the top staff, we’ll add them to the first note of the first measure and the second
note of the second measure. For the bottom staff, we’ll add dynamic markings to the second note of the first
measure and the fourth note of the second measure.

>>> contexttools.DynamicMark (' pp’) (upper_measures[0] [0]
DynamicMark (" pp’) (a’8)

>>> contexttools.DynamicMark ('mp’) (upper_measures[1] [1]
DynamicMark (‘mp’) (g’ 8)

>>> contexttools.DynamicMark ('pp’) (lower_measures[0] [0] [1]
DynamicMark (" pp’) (d’8)

>>> contexttools.DynamicMark (‘mp’) (lower_measures[1] [0][3])
DynamicMark (‘mp’) (c’8)

Let’s add a double bar to the end of the piece:
>>> bar_line = marktools.BarLine(’|.")

>>> bar_line.attach(lower_staff.leaves[-1]
BarLine (' |.") (g2)

And see how things are coming out:

4.4. The details 57

Abjad Documentation, Release 2.12

>>> show (score)

4] —

) 1 P— L3] L) 1 P—

LR |) - oF 1 1 1 e | 1 I
e . — 1 ./ — 1 1 1 I
= 3 — L . 1 u I

Notice that the beams of the eighth and sixteenth notes appear as you would usually expect: grouped by beat. We
get this for free thanks to LilyPond’s default beaming algorithm. But this is not the way Bartdk notated the beams.
Let’s set the beams as Bartok did with some crossing the bar lines:

>>> beamtools.BeamSpanner (upper_measures [0]
BeamSpanner (|2/4 (4) |)

>>> pbeamtools.BeamSpanner (lower_staff.leaves[1:5])
BeamSpanner (d’8, c’8, b8, a8)

>>> pbeamtools.BeamSpanner (lower_staff.leaves[6:10])
BeamSpanner (c’8, bf8, a8, g8)

>>> show (score)

I ® T r-!¥=-r-1__ | -
1 i = l I I i
- - =
v pp * mp
4
—f_.'ru—' - ' !'-'F '}’)] ‘JF ol 5
—— 1 ¥ i f 1
= k- d = 1 J
pp mp

Now some slurs:

>>> spannertools.SlurSpanner (upper_staff.leaves[0:5])

SlurSpanner (a’8, g’8, £'8, e’8, d’'4)

>>> spannertools.SlurSpanner (upper_staff.leaves[5:])

SlurSpanner(g’8, £'8, ... [7] ..., d'2, d'2)

>>> spannertools.SlurSpanner (lower_staff.leaves[1l:6])

SlurSpanner (d’8, c’8, b8, a8, af4)

>>> spannertools.SlurSpanner (lower_staff.leaves[6:13] + (main_voice_m4, main_voice_mb5))
SlurSpanner(c’8, bf8, ... [5] ..., {b4, a4}, {g2})

Hairpins:
>>> spannertools.CrescendoSpanner (upper_staff.leaves|[-7:-2])
CrescendoSpanner (c’8, d’16, e’1l6, £f’8, e’8)

>>> spannertools.DecrescendoSpanner (upper_staff.leaves[-2:])
DecrescendoSpanner (d’2, d’2)

A ritardando marking above the last seven notes of the upper staff:

>>> text_spanner = spannertools.TextSpanner (upper_staff.leaves[-7:])
>>> text_spanner.override.text_spanner.bound_details__ left__text = markuptools.Markup(’'ritard.’)

And ties connecting the last two notes in each staff:
>>> tietools.TieSpanner (upper_staff[-2:])
TieSpanner (|2/4(1) |, 12/4(1)])

>>> tietools.TieSpanner ([appendix_voice_m4[0], appendix_voice_m5([0]])
TieSpanner (b2, b2)

The final result:

>>> show (score)

58 Chapter 4. Bartok: Mikrokosmos

Abjad Documentation, Release 2.12

fi o ritard.. _ _ _ _ _ _ _ _
[} L3 [}
3 ST =0 | !
% — P —_— ___"_‘:'._.—=-—r#
"’._________—-"""H-,._ e —
- B
—5\-—n—? — be *be - " = ;F? —
- | 3 i —
X = 3 | t
rp mp

4.4. The details 59

Abjad Documentation, Release 2.12

60 Chapter 4. Bartok: Mikrokosmos

CHAPTER
FIVE

FERNEYHOUGH: UNSICHTBARE
FARBEN

Note: Explore the abjad/demos/ferneyhough/ directory for the complete code to this example, or import it into
your Python session directly with:

* from abjad.demos import ferneyhough

Mikhial Malt analyzes the rhythmic materials of Ferneyhough’s Unsichtbare Farben in The OM Composer’s Book
2.

Malt explains that Ferneyhough used OpenMusic to create an “exhaustive catalogue of rhythmic cells” such that:
1. They are subdivided into two pulses, with proportions from 1 /1 to 1/11.
2. The second pulse is subdivided successively by 1, 2, 3, 4, 5 and 6.

Let’s recreate Malt’s results in Abjad.

5.1 The proportions

First we define proportions:

>>> proportions = [(1, n) for n in range(l, 11 + 1)]

>>> proportions
ra, n, @€, 2y, 1, 3, (1, 4, @€, 5, &, 6, (1, 7)), 1, 8, (1, 9, (1, 10), (1, 11)]

5.2 The transforms

Then we define a helper function:
def divide_tuplet (tuplet, n):
last_tie_chain = tietools.get_tie_chain (tuplet[-1]

proportions = n * [1]
tietools.tie_chain_to_tuplet_with_ratio(last_tie_chain, proportions)

5.3 The rhythms

We set the duration of each tuplet equal to a quarter note:

>>> duration = Fraction(l, 4)

61

Abjad Documentation, Release 2.12

And then we make the rhythms:

>>> music
>>> for proportion in proportions:
tuplets =
for n in range(l, 6 + 1):
= tuplettools.make_tuplet_from_ duration_and_ratio(duration, proportion)

=[]

tuplet
divide
tuplet

[]

_tuplet (tuplet, n)
s.append (tuplet)

music.extend (tuplets)

5.4 The score

‘We make the score:

>>>

staff

= stafft

>>> time_signature

>>>

sScore

= Score(

And then configure it:

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

score.
score.
.override.
score.
.override.

Score

score

score.
score.
score.
score.
.override.

sScore

set.prop
set.tupl

override.

override.

override

override.
override.

ools.RhythmicStaff (music)

= contexttools.TimeSignatureMark ((1, 4)) (staff)
[staff])
ortional_notation_duration = schemetools.SchemeMoment (1,
et_full_length = True

bar_line.stencil = False

bar_number.transparent = True
spacing_spanner.uniform_stretching = True
spacing_spanner.strict_note_spacing = True

.time_signature.stencil = False
tuplet_bracket.padding = 2
tuplet_bracket.staff_padding = 4

5.5 The LilyPond file

Finally we insert the score into a LilyPond file:

>>> lilypond_file

= lilypondfiletools.make_basic_lilypond_file (score)

And then configure it:

>>>
>>>
>>>
>>>
>>>
>>>

lilypond_file.
lilypond_file.
lilypond_file.
lilypond_file.
lilypond_file.
lilypond_file.

default_paper_size = ’11x17’, ’'portrait’
global_staff _size = 12
layout_block.indent = 0
layout_block.ragged_right = True
paper_block.ragged_bottom = True

tuplet_number.text = schemetools.Scheme (' tuplet—-number:

:calc—-fraction-text’)

paper_block.system_system_spacing = layouttools.make_spacing_vector (0, O,

Which looks like this:

8/

62

Chapter 5. Ferneyhough: Unsichtbare Farben

0)

Abjad Documentation, Release 2.12

>>> show(lilypond_file)

J J J J J i d J =] il T
— T
b d | d L J4 J) e e e | Sl dd 4 I

1 % d l — — —
o ey
o 5 a3 Sed A
A J]) L J J J 4 g T 1 | ;i |
Al FJ] | J]) o e e e D) = === ==
. — ——y
A L). il J J & L 5 J [k & |
——— r Gl 1 r 3
Fl | — F & 1 F B FFrr 7
il - 5
r o 1T 5 1 r 52 1T &8 1 r & 1 r 33
.3 Fl] LJ J J) 2 I R B J ST T)
r o Sl 1 r i 1
L 43 r 3 1 ol 1 r L EL r o 1 A
J:3) F]] | — — F I 3 3 FF b FF
r HE 1T I F 18 HE S IE
r .1 r {2 95 I ; 1 1 r 5 1
A FT 1. FI—T) FEJi 711 F)i i
3.2 3:2 3.1 32 3:2 32
1 e 1811 FES T 500 180
A Fl] Ll j| J) 2 e e ;i 3

5.5. The LilyPond file

63

Abjad Documentation, Release 2.12

64 Chapter 5. Ferneyhough: Unsichtbare Farben

CHAPTER
SIX

LIGETI|: DESORDRE

Note: Explore the abjad/demos/desordre/ directory for the complete code to this example, or import it into your
Python session directly with:

* from abjad.demos import desordre

This example demonstrates the power of exploiting redundancy to model musical structure. The piece that con-
cerns us here is Ligeti’s Désordre: the first piano study from Book I. Specifically, we will focus on modeling the

first section of the piece:

ETUDE 1:, DESORDPRE" De'dige & Pierre Beuwlez Gyorgy Ligetc
K 1985
Molter vivace, Vigerodor, molte wWimicr o=76 5 o
P S A S T S s Vit S
S E e LA BT R S P h e T | I e
P

Lt 8

o iissgisnyd P

Eﬂ‘ >F = F 1 ol

= L — = f A = s L
1 —:EM:W #} 33T il v i T - -._'.['x? — m‘;

ang 3 T Lus = | SEIN PR oy

- > L r[Fq-
H T
_ T AT TLERMF4R T,
[] Z — AY . ‘o2 ia I LW 1 FY Pl L 1 T ¥
: t R AP e e
L 1] | a1 | Y i 1 —
3 >
> > > I r]' | >
> > > > >
> >

The redundancy is immediately evident in the repeating pattern found in both staves. The pattern is hierarchical.
At the smallest level we have what we will here call a cell:

=
f) |

——e

JP
There are two of these cells per measure. Notice that the cells are strictly contained within the measure (i.e., there
are no cells crossing a bar line). So, the next level in the hierarchy is the measure. Notice that the measure sizes
(the meters) change and that these changes occur independently for each staff, so that each staff carries it’s own
sequence of measures. Thus, the staff is the next level in the hierarchy. Finally there’s the piano staff, which is
composed of the right hand and left hand staves.

In what follows we will model this structure in this order (cell, measure, staff, piano staff), from bottom to top.

65

Abjad Documentation, Release 2.12

6.1 The cell

Before plunging into the code, observe the following characteristic of the cell:

1. It is composed of two layers: the top one which is an octave “chord” and the bottom one which is a straight
eighth note run.

2. The total duration of the cell can vary, and is always the sum of the eight note funs.
3. The eight note runs are always stem down while the octave “chord” is always stem up.

4. The eight note runs are always beamed together and slurred, and the first two notes always have the dynamic
markings ‘f* ‘p’.

The two “layers” of the cell we will model with two Voices inside a parallel Container. The top Voice will hold
the octave “chord” while the lower Voice will hold the eighth note run. First the eighth notes:

>>> pitches = [1,2,3]

>>> notes = notetools.make_notes (pitches, [(1, 8)])
>>> beamtools.BeamSpanner (notes)

BeamSpanner (cs’8, d’'8, ef’8)

>>> spannertools.SlurSpanner (notes)

SlurSpanner (cs’8, d’8, ef’8)

>>> contexttools.DynamicMark (' £") (notes[0]
DynamicMark (" £’) (cs’8)

>>> contexttools.DynamicMark (p’) (notes[1]
DynamicMark ("p’) (d’8)

>>> voice_lower = Voice (notes)

>>> voice_lower.name = 'rh_lower’

>>> marktools.LilyPondCommandMark (’ voiceTwo’) (voice_lower)
LilyPondCommandMark (’ voiceTwo’) (Voice-"rh_lower" {3}

The notes belonging to the eighth note run are first beamed and slurred. Then we add the dynamic marks to the
first two notes, and finally we put them inside a Voice. After naming the voice we number it 2 so that the stems of
the notes point down.

Now we construct the octave:

>>> import math

>>> n = int (math.ceil (len(pitches) / 2.))

>>> chord = Chord([pitches[0], pitches[0] + 12], (n, 8)
>>> marktools.Articulation(’>") (chord)
Articulation(’>") (<cs’ cs’’>4)

>>> voice_higher = Voice ([chord])

>>> voice_higher.name = ’'rh_higher’

>>> marktools.LilyPondCommandMark (' voiceOne’) (voice_higher)
LilyPondCommandMark (' voiceOne’) (Voice-"rh_higher"{1})

The duration of the chord is half the duration of the running eighth notes if the duration of the running notes
is divisible by two. Otherwise the duration of the chord is the next integer greater than this half. We add the
articulation marking and finally ad the Chord to a Voice, to which we set the number to 1, forcing the stem to
always point up.

Finally we combine the two voices in a parallel Container:

>>> container = Container ([voice_lower, voice_higher])
>>> container.is_parallel = True

This results in the complete Désordre cell:

>>> cell = Staff ([container])
>>> show (cell)

66 Chapter 6. Ligeti: Désordre

Abjad Documentation, Release 2.12

- J

"‘-_-""F/

JP

Because this cell appears over and over again, we want to reuse this code to generate any number of these cells.

We here encapsulate it in a function that will take only a list of pitches:

def make_desordre_cell (pitches) :
/’’The function constructs and returns a #*Désordre cellx*.
‘pitches’ is a list of numbers or, more generally, pitch tokens.
notes = [Note(pitch, (1, 8)) for pitch in pitches]
beamtools.BeamSpanner (notes)
spannertools.SlurSpanner (notes)
contexttools.DynamicMark (' £7) (notes[0]
contexttools.DynamicMark ("p’) (notes[1]

make the lower voice
lower_voice = Voice (notes)

lower_voice.name = ’'RH Lower Voice’
marktools.LilyPondCommandMark (' voiceTwo’) (lower_voice)
n = int (math.ceil (len(pitches) / 2.))

chord = Chord([pitches[0], pitches[0] + 12], (n, 8)
marktools.Articulation(’>’) (chord)

make the upper voice

upper_voice = Voice ([chord])

upper_voice.name = ’'RH Upper Voice’
marktools.LilyPondCommandMark (' voiceOne’) (upper_voice)

combine them together
container = Container ([lower_voice, upper_voicel])
container.is_parallel = True

make all 1/8 beats breakable
for leaf in lower_voice.leaves[:-1]:

marktools.BarLine(’’) (leaf)

return container

Now we can call this function to create any number of cells. That was actually the hardest part of reconstructing
the opening of Ligeti’s Désordre. Because the repetition of patters occurs also at the level of measures and staves,

we will now define functions to create these other higher level constructs.

6.2 The measure

We define a function to create a measure from a list of lists of numbers:

def make_desordre_measure (pitches):
’7’Constructs a measure composed of x*Désordre cells+.

‘pitches’ is a list of lists of number (e.g., [[1, 2, 3], [2, 3, 4]])

The function returns a measure.
s

for sequence in pitches:
container = make_desordre_cell (sequence)

time_signature = container.duration

time_signature = mathtools.NonreducedFraction (time_signature)
time_signature = time_signature.with_denominator (8)

measure = Measure (time_signature, [container])

return measure

6.2. The measure

67

Abjad Documentation, Release 2.12

The function is very simple. It simply creates a DynamicMeasure and then populates it with cells that are created
internally with the function previously defined. The function takes a list pitches which is actually a list of lists
of pitches (e.g., [[1,2,31, [2,3,4]1]. The list of lists of pitches is iterated to create each of the cells to
be appended to the DynamicMeasures. We could have defined the function to take ready made cells directly, but
we are building the hierarchy of functions so that we can pass simple lists of lists of numbers to generate the full
structure. To construct a Ligeti measure we would call the function like so:

>>> pitches = [[0, 4, 71, [0, 4, 7, 91, [4, 7, 9, 11]]
>>> measure = make_desordre_measure (pitches)
>>> staff = Staff ([measure])

>>> show (staff)

=

e
P

6.3 The staff

Now we move up to the next level, the staff:

def make_desordre_staff (pitches):
staff = Staff ()

for sequence in pitches:
measure = make_desordre_measure (sequence)
staff.append (measure)

return staff

The function again takes a plain list as argument. The list must be a list of lists (for measures) of lists (for cells) of
pitches. The function simply constructs the Ligeti measures internally by calling our previously defined function
and puts them inside a Staff. As with measures, we can now create full measure sequences with this new function:
>>> pitches = [[[-1, 4, 5], (-1, 4, 5, 7, 911, [((O0, 7, 91, [-1, 4, 5, 7, 9]1]

>>> staff = make_desordre_staff (pitches)
>>> show (staff)

fi |

sl L
P

6.4 The score

Finally a function that will generate the whole opening section of the piece Désordre:

def make_desordre_score (pitches) :
’/7’Returns a complete PianoStaff with Ligeti music!’’’

assert len(pitches) == 2
piano_staff = scoretools.PianoStaff ()

build the music...

for hand in pitches:
staff = make_desordre_staff (hand)
piano_staff.append(staff)

68 Chapter 6. Ligeti: Désordre

Abjad Documentation, Release 2.12

set clef and key signature to left hand staff...
contexttools.ClefMark ('bass’) (piano_staff[1])
contexttools.KeySignatureMark ('b’, 'major’) (piano_staff[1l])

wrap the piano staff in a score, and return
score = Score([piano_staff])

return score

The function creates a PianoStaff, constructs Staves with Ligeti music and appends these to the empty PianoStaff.
Finally it sets the clef and key signature of the lower staff to match the original score. The argument of the function
is a list of length 2, depth 3. The first element in the list corresponds to the upper staff, the second to the lower
staff.

The final result:
>>> top = [[[-1, 4, 51, [-1, 4, 5, 7, 911, (10, 7, 91, [-1, 4, 5, 7, 911, [([l2, 4, 5, 7, 91, [0, 5, 711, [I[-3,
>>> pottom = [[[-9, -4, -21, [-9, -4, -2, 1, 311, [[-6, -2, 11, [-9, -4, -2, 1, 311, [[-4, -2, 1, 3, 61, [-4,

>>> score = make_desordre_score ([top, bottom])

>>> from abjad.tools import documentationtools
>>> lilypond_file = documentationtools.make_ligeti_example_lilypond_file (score)

>>> show(lilypond_file)

. b
'“ 1 1 —_—
¥ FP_ fP

i

»

N

Ik
oL S
'3
k-
T

3
=

>
!
1

i

Now that we have the redundant aspect of the piece compactly expressed and encapsulated, we can play around
with it by changing the sequence of pitches.

In order for each staff to carry its own sequence of independent measure changes, LilyPond requires some special
setting up prior to rendering. Specifically, one must move the LilyPond Timing_translator out from the
score context and into the staff context.

(You can refer to the LilyPond documentation on Polymetric notation to learn all about how this works.)

In this example we a custom documentationtools function to set up our LilyPond file automatically.

6.4. The score 69

http://lilypond.org/doc/v2.12/Documentation/user/lilypond/Displaying-rhythms#Polymetric-notation

Abjad Documentation, Release 2.12

70 Chapter 6. Ligeti: Désordre

CHAPTER
SEVEN

MOZART: MUSIKALISCHES
WURFELSPIEL

Note: Explore the abjad/demos/mozart/ directory for the complete code to this example, or import it into your
Python session directly with:

* from abjad.demos import mozart

Mozart’s dice game is a method for aleatorically generating sixteen-measure-long minuets. For each measure,
two six-sided dice are rolled, and the sum of the dice used to look up a measure number in one of two tables
(one for each half of the minuet). The measure number then locates a single measure from a collection of musical
fragments. The fragments are concatenated together, and “music” results.

Implementing the dice game in a composition environment is somewhat akin to (although also somewhat more
complicated than) the ubiquitous hello world program which every programming language uses to demonstrate its
basic syntax.

Note: The musical dice game in question (k516f) has long been attributed to Mozart, albeit inconclusively. Its
actual provenance is a musicological problem with which we are unconcerned here.

7.1 The materials

At the heart of the dice game is a large collection, or corpus, of musical fragments. Each fragment is a single
3/8 measure, consisting of a treble voice and a bass voice. Traditionally, these fragments are stored in a “score”,
or “table of measures”, and located via two tables of measure numbers, which act as lookups, indexing into that
collection.

Duplicate measures in the original corpus are common. Notably, the 8th measure - actually a pair of measures
represent the first and second alternate ending of the first half of the minuet - are always identical. The last measure
of the piece is similarly limited - there are only two possibilities rather than the usual eleven (for the numbers 2 to
12, being all the possible sums of two 6-sided dice).

How might we store this corpus compactly?

Some basic musical information in Abjad can be stored as strings, rather than actual collections of class instances.
Abjad can parse simple LilyPond strings via p, which interprets a subset of LilyPond syntax, and understands
basic concepts like notes, chords, rests and skips, as well as beams, slurs, ties, and articulations.

>>> 1lily_string = r"\new Staff { c’4 (d'4 <cs’ e'>8) —-. r8 <g’ b’ d’’'>4 »~ \marcato ~ <g’ b’ d’'’>1 }"
>>> parsed_result = p(lily_string)
>>> f (parsed_result)
\new Staff {
c"4 (
d’4
<cs’ e’>8 —-\staccato)

7

http://en.wikipedia.org/wiki/Hello_world_program

Abjad Documentation, Release 2.12

WOLFGANG AMADEUS MOZART

Musikalisches Wiirfelspiel

Table of Measure Numbers

Part One Part Two
] 11 u vV v vl Vil I n m v v vi Vil VIl
2 96 | 22| 141 | 41105 122 11] 30 2 70 [121] 26 9112 49109 14
3 12 6128 63146 | 46| 134 | 81 I3 17| 39126 6174 18116 83
4 69 | 95 158 | 13153 | ss |10 24 4 66 | 139 15132 73| 58| 145 | 79
§ | 40| 173 85161 2 (159 | 100 g 9% | 176 71 34| 67160 521|170
6 1148 | 74163 | 45| 80| 97| 36| 107 6 25 | 143 | 64 | 125 | 76| 136 1 93
7 1104 [157 | 27 | 167 [154 | 68 [118 | 91 7 p138 | 71150 29101 162 23 | 151
8 li1s2]| 60171 | 53| 99133 | 21| 127 8 16 | 155 | s7 175 | 43 [168 | 89 | 172
9 |19 84|114] so[140| 86| 169 | 94 9 J120]| 88| 48 | 166 | St 115 | 72| 111
10 98 | 142 | 42 | 156 | 75129 | 62| 123 10| es| 77| 19| 82137] 38| 149 8
11 3] 87 |165] 61 [135 47 | 147 | 33 11 | 102 4] 31| 164|144 | 59173 | 78
12 s4|130| 10103 | 28| 37| 106 5 12 35| 20108 92| 12124 44|13
Table of Measures
a7 e 2 3 4 pgp 5 6 4 A
o K ' ""lﬂ; ’ = F__F F"»—'
1 } } Y % T . _{ 1 }
w + ~+ l - t
%ﬂ
& 3
: .-—“' ? [q; i { | o T 1
| o | 1 Ta#—# +— + — L
' gL == ! *F

Figure 7.1: Part of a pen-and-paper implementation from the 20th century.

72 Chapter 7. Mozart: Musikalisches Wiirfelspiel

Abjad Documentation, Release 2.12

r8
<g’ b’ d’’'>4 "\marcato ~
<g’ b’ d’’>1

>>> show (parsed_result)

So, instead of storing our musical information as Abjad components, we’ll represent each fragment in the corpus
as a pair of strings: one representing the bass voice contents, and the other representing the treble. This pair of
strings can be packaged together into a collection. For this implementation, we’ll package them into a dictionary.
Python dictionaries are cheap, and often provide more clarity than lists; the composer does not have to rely on
remembering a convention for what data should appear in which position in a list - they can simply label that data
semantically. In our musical dictionary, the treble voice will use the key ‘t” and the bass voice will use the key ‘b’.

>>> fragment = {’t’: "g’’8 (e''8 c’''8)", 'b’': '<c e>4 r8'}

Instead of relying on measure number tables to find our fragments - as in the original implementation, we’ll
package our fragment dictionaries into a list of lists of fragment dictionaries. That is to say, each of the sixteen
measures in the piece will be represented by a list of fragment dictionaries. Furthermore, the 8th measure, which
breaks the pattern, will simply be a list of two fragment dictionaries. Structuring our information in this way lets
us avoid using measure number tables entirely; Python’s list-indexing affordances will take care of that for us.
The complete corpus looks like this:

def make_mozart_measure_corpus () :
return |
[
{"b’: "c4 r8’, 't’: "e’’8 c’'’'8 g’8"},
{"b’: "<c e>4 r8’, 't’': "g’8 c’'’8 e'’8"},
{"b’: "<c e>4 r8’, 't’': "g'’'8 (e’'’8 c''8)"},
{"b’: "<c e>4 r8’, 't’: "c’'’16 b'16 c’''16 e’’16 g'l6 c’'’1l6"},
{"b’: "<c e>4 r8’, 't’: "c'’’16 b’'’"16 c’''’16 g'’16 e'’16 c’'’16"},
{"b’: "c4 r8’, 't’: "e’’1l6 d’'’16 e’’16 g’'’16 c’’’16 g’'’1l6"},
{"b’: "<c e>4 r8’, 't’: "g'’'8 f''16 e’’16 d''16 c'’1l6"},
{’b’: "<c e>4 r8’, "t’: "e’’16 c’'’16 g’'’l6 e’'’16 c’'’’16 g’'’1l6"},
{"b’: '<c e>16 gl6 <c e>16 gl6 <c e>16 gl6’, 't’: "c’'’8 g’8 e’’8"},
{"b’: "<c e>4 r8’, 't’': "g’'’8 c’'’8 e’’8"},
{"b”: "c8 c8 c8’, 't': "<e’ c'’>8 <e’ c’'’'>8 <e’ c’'’'>8"},

{’'b": "c4 r8’, 't’: "e’’8 c’'’8 g’'8"},

{’b’: ’'<c e>4 r8", '"t’: "g’8 c’’8 e’'’8"},

{'b’: "<c e>4 r8’, 't’': "g’'’8 e’’8 c’'’8"},

{’b’: '<e g>4 r8", 't’: "c’’1l6 g’l6 c’’16 €''16 g"l6 c’’"16"},
{'b’: "<c e>4 r8’, ’'t’: "c’'’’16 b’'’16 c’'’’16 g’'’16 e’'’16 c’'’16"},
{"b": "c4 r8’, '"t’: "e’’1l6 d’'’16 e’'’16 g’'’1l6 c’’’16 g’'’1l6"},
{’'b’: "<c e>4 r8’, 't’': "g’'’8 f£''16 e’’16 d’'"16 c’’16"},

{"b’: "<c e>4 r8’, ’'t’: "c’’16 g’l6 e’’16 c’’16 g'’1l6 e"’"16"},
{’b’: '<c e>4 r8", '"t’: "c’’8 g’8 e’’8"},

{"b’: "<c e>4 <c g>8’, ’'t’: "g’’8 c’'’8 e'’8"},

{"b’: 'c8 c8 c8’, '"t’: "<e’ c’'’>8 <e’ c’'’'>8 <e’' c'’'>8"},

{"b’: "<b, g>4 g,8", 't’: "d’"'16 e’'16 £'716 d'’16 c’'’16 b’1le"},
{"b’: "g,4 8", 't’': "b’8 d’'’8 g’'’8"},

{"b”: "g,4 8", 't’: "b’8 d’’16 b’l6 a’'l6 g'le"},

{"b’: "<g b>4 r8’, ’'t’': "f'’8 d’'8 b’'8"},

{'b’": "<b, d>4 r8’, 't’: "g’’le6e fs’’1l6 g’'’l6 d’'’16 b’l6e g’'le"},
{"b’: "<g b>4 r8’, 't': "f'’16 e’'’16 £'716 d’’16 c’’16 b’1le"},
{'b’": "<g, g>4 <b, g>8’, 't’: "b’'le c’’l6 d''1l6 e’’1l6 £'’16 d’"'16"},
{"b”: "g8 g8 g8’, 't’: "<b’ d'’'>8 <b’ d’’'>8 <b’ d'’'>8"},

{"b’: "g,4 r8’, 't’': "b’'16 c’’16 d’'16 b’16 a’le g’le"},

{"b’: "b,4 8", 't’: "d’"'8 (b’8 g’8)"},

{"b’: "g4 r8", 't’: "b’1l6 a’l6 b’'16 c’’16 d'’16 b’'1l6"},

7.1. The materials 73

Abjad Documentation, Release 2.12

{Vbl:
(7% ¢
{Vbl:
(7% ¢
{Vbl:
{Vbl:
{Vbl:
{Vbl:
(7% ¢
{Vbl:
(7% 5

{Vbl:
{Vbl:
{'b’:
{Vbl:
{'b’:
{Vbl:
{'b":
{Vbl:
{Vbl:
{"b’:
{Vbl:

{'b’:
{Vbl:
{Vbl:
{Vbl:
{Vbl:
{'b":
{Vbl:
{'b’:
{Vbl:
{'b’:
{Vbl:

{Vbl:
{"b’ :
{Vbl:
{doa:
{Vbl:
{Vbl:
(7% ¢
{Vbl:
{"b’ :
{Vbl:
{707

(7% 5
{Vbl:
(7% 5
{Vbl:
(Vbl:
(7% ¢
{Vbl:
(7% ¢
{Vbl:
(7% ¢
{Vbl:

{'b’:
{('b’ :
{('b’:

'<c
"c4
' <e
'<e
r<e
'<c
"c4
' <e
' <e
' <e
'<e

"c4d
’c8
'c4
’c8
"c4
"c4
'<c
r<c
’c8
I <o
' <c

'<b,
7 <y,
' <b,
" <D,
7 <y,
"b, 4
7 <y,
'<b,
'<Db,
'<b,
<D,

’c8
’c8
"c8
’c8
"c8
’c8
"c8
’c8
c8
"c8
’c8

"g,8
"g,8

rd4
r<d
r<d
7 e
rd4

e>4 r8’,
r8’, 't’:
g>4 r8’,
g>4 r8’,
g>4 r8’,
e>4 r8’,
r8’, 't’:
g>4 r8’,
g>4 r8’,
g>4 r8’,
g>4 r8’,

r8’, 't’:
el e, "
27, "&’s3
el e, "
r8’, '"t’:
r8’, 't’:

Itl:

ner
Itl:
e’ g
7ie” g
Itl:

"c’’16 b’'16 c’’16 e’’16 g’'8"},
16 c¢’’16 b’16 c’’16 g'8"},

"C778 (g,8 678)"}’

llcll8 6118 glgll},

"c’’16 b’16 c’’16 g’16 e’16 c’16"},
“C”8 clll6 dlll6 6118"},

N<el !t e’ ’>8 <’ e’ ’>16 <d’'’ f'’>16 <e’’ g”>8"},

Itl:
Tt
Itl:
't

"C778 elll6 Clll6 ng"},
c’’16 g’16 e’’16 c’’16 g’’8"},
"c778 elll6 c7716 gll8"},
"er716 e’716 c’'16 g'16 e’ 8"},

"fs’’8 a’’l6 fs’'’1l6 d’'’1l6 fs’'’16"},

&’ 3
ngr
i’ 3
ngr
"d!

a>4 <c a>8’,
fs>8 <c fs>8 <c a>8’, ’'t’: "a’8 a’le6 d’'’1l6 fs’’'8"},

c8 c8’, '

&’ 3

"<fs’ d’7>8 <d’’ fs’’>8 <fs’’ a’’>8"},
"16 a’16 fs’’16 d’’16 a’’16 fs’’16"},
"<fs’ d’7>8 <fs’ d’’>8 <fs’ d’’>8"},

"8 a’8 ~\\turn fs’’8"},

716 cs’’16 d’’16 fs’’16 a’’16 £s’’16"},
"t’: "fs’78 a’’g8 d’’8"},

"<d’'’ fs’’>8 <d’’ fs’'’>8 <d’'’ fs’'’>8"},

d>8 <c d>8 <c d>8’, 't’: "fs’’8 f£s’’16 d’’16 a’’8"},

a>4 rg8’,

e,

"fs’’16 d'’16 a’'l6 a’’l1l6 fs’’16 d’’16"},

d>8 <b, d>8 <b, d>87, 't’: "g’’16 f£s’’16 g’’16 b’’16 d’’8"},
d>4 r8’, ’t’: "g’’8 b’’16 g’’16 d’’16 b’16"},

d>4 r8/, Itl: ||g778 bll8 d”8"},

g>4 r8’, ’t’: "a’8 fs’16 g’16 b’16 g’’16"},

d>4 <b, g>8’, ’t’: "g’’16 £s'716 g’’16 d’’16 b’16 g’ 16"},
r87, 't’: "g’’8 b’’16 g'’16 d’’16 g’'’16"},

g>4 r8’, ’t’: "d’’8 g’’16 d’’16 b’16 d’’16"},

g>4 r8’, 't’: "d’’8 d’’16 g’’16 b’’8"},

d>8 <b, d>8 <b, g>8’, 't’: "a’’16 g’’16 fs’’16 g’’16 d’’8"},
d>4 r8’, "t’: "g’’8 g’’16 d’’16 b’’8"},

d>4 r8’, "t’: "g’’16 b’’16 g’’16 d’’16 b’8"},
ds d,8", "t’: "e’’16 c’’16 b’16 a’l6 g’l6 f£s’16"},
ds d,8", ’t’: "a’l6 e’’16 <b’ d’’>16 <a’ c’’>16 <g’ b’>16 <fs’
ds d,8", ’t’: "<b’ d’’>16 (<a’ c’’>16) <a’ c’’>16 (<g’ b’>16
ds d,8", "t’: "e’’16 g’’16 d’’16 c’’16 b'16 a’l6"},
ds d,8", ’"t’: "a’l6 e’’16 d’’16 g’’16 fs’’16 a’’16"},
ds d,8", "t’: "e’’16 a’’16 g’’16 b’’16 fs'’16 a’’16"},
ds d,8", "t’: "c’’16 e’’16 g’’16 d’’16 a’l6 fs’’16"},
ds d,8", "t’: "e’’16 g’’16 d’’16 g’’16 a’l6 fs’’16"},
ds d,8", 't’: "e’’16 c’’16 b’16 g’16 a’lé6 f£s’16"},
ds d,8", ’t’: "e’’16 c’’’16 b’’16 g’’16 a’’16 £s’’16"},
ds d,8", ’t’: "a’8 d’’16 c’’16 b’16 a’l6"},

gl6 f16 el6 dl6’, ’t’: "<g’ b’ d’’ g’’>4 r8"},

bl6 gl6

c8’, "t’:
fs>4 r8’,

fslée ele6’, 't’: "<g’ b’ d’'’ g’'’'>4 r8"},

"fs’’8 a’’l1l6 fs’’1l6 d’’16 fs’'’1l6"},

e

: "d’’16 a’le d’'’16 fs’’16 a’’1l6 fs’’16"},

a>8 <d fs>8 <c d>8’, ’"t’: "fs’'’8 a’'’8 fs’'’8"},
a>4 <c a>8’,

e®”, "&t"s

ngyr

"tr: "fs’’16 a’’l16 d'’’16 a’’l6 fs'’16 a’'’le"},
16 fs’16 a’l6 d’’16 fs’’16 a’’l6"},

'd,16 dl6 csl6 dl6 cl6 dle’, 't’: "<a’ d’’ fs’’>8 fs’’4 ~\\trill"},
fs>4 <c fs>8’, 't’: "a’'’8 (fs’’8 d’'’'8)"},
fs>4 <c f£s>8’, 't’: "d’’’'8 a’’l6 fs’’16 d’'’16 a’le"},

r<d
r<d
r<d
'<c
’<d

7 <y,

fs>4 r8’,

e

a>4 <c a>8’,
fs>4 <c a>8',

g>4 r8’,

e,

: "d’’16 a’l16 d’’8 fs’’8"},
"t7: "fs7716 d’'16 a’8 fs’’8"},
'tr: omarg drrg £s7rgny,

ngrr8 b’’16 glrl6 d’’8"},

"b,16 d16 gl6 dl6 b,16 g,16’, 't’: "g’’8 g’8 g’8"},
. llgl716 blll6 gll16 b7716 dll8"},

"b,4

w®7, 7’

a’>16"},

)

<g’ b’>16

74

Chapter 7. Mozart: Musikalisches Wiirfelspiel

(<fs’

a’>1¢

Abjad Documentation, Release 2.12

{"b’:
{Vbl:
{'b’:
{Vbl:
{'b":
{Vbl:
{Vbl:
{Vbl:

{Vbl:
{"b":
{Vbl:
{Vbl:
{Vbl:
{Vbl:
{"b":
{Vbl:
{"b’:
{Vbl:
{'b’:

{'b’:
{Vbl:
{'b":
{Vbl:
{'b’:
{Vbl:
{Vbl:
{Vbl:
{Vbl:
{'b’:

{Vbl:
{'b":
{Vbl:
{Vbl:
{"b’:
{Vbl:
{"b’:
{Vbl:
{'b’:
{Vbl:
{Vbl:

(7% ¢
{Vbl:
(7% 5
{Vbl:
{Vbl:
{Vbl:
{Vbl:
(7% ¢
{Vbl:
(7% 5
{Vbl:

{Vbl:
{"b’:
{Vbl:
{'b’:
{Vbl:
{'b":
{Vbl:
{Vbl:
{Vbl:
{Vbl:
{'b":

" <D,
7 <y,
'<b,
7 <y,
'<b,
7 <y,

d>4 <b, d>8’, ’t’: "a’’16 g’’16 b’’16 g’’16 d’’16 g’’16"},
d>4 <b, d>8’, 't’: "g’’8 d’’16 b’16 g’8"},

d>4 <b, d>8’, 't’: "g’’16 b’’16 d’’’16 b’’16 g’’8"},

d>4 r8’, ’t’: "g’’16 b’’16 g’’16 d’’16 b’16 g’16"},

d>4 <b, d>8’, 't’: "g’’16 d’’16 g’’16 b’’16 g’’16 d’’16"},
d>4 <b, g>87, VtV: "g”16 b7716 gl’8 d778"},

"g,16 b,16 g8 b,8’, 't’: "g’’8 d’’4 ~\\trill"},
’b,4 r87, It’: "gllg b!ll6 dlll16 d!lSll},

"clé el6 gl6 el6 c’1l6 cle", 't’: "<c'’ e’’>8 <c'’ e’’>8 <c'’ e’'’>8"},

"ed
'<c
'<c
e

"clée b,16 cl6 dl6 el6 fsl6’, 't’: "<g’ c’’ e’'’>8 e’’4 ~\\trill"},

'<c
'<c
E
<@
'<c

" g4
"<g,
Ig8
Ig4
Ig8
Ig4
Ig8
1<y
’'<b,

el6 cle’, 't’: "c’'’16 g’l6 c’'’16 e’’16 g’’16 <c’'’ e’'’>16"},
g>4 <c e>8’, ’'t’: "e’'’8 g’'’'16 e’’16 c'’'8"},

g>4 r8’, 't’: "e’’16 c’''16 e’''16 g’'’16 c'’"16 g’’16"},

g>4 <c g>8’, 't’: "e’’16 g'’1l6 c’'’'16 g'’1l6 e’’16 c’'’16"},

e>16 gl6 <c e>16 gl6 <c e>16 gle’, 't’: "e’’8 c’'’'8 g’8"},
g>4 <c e>8’, 't’: "e’’8 c’’16 e’’16 g’'’1l6 c'’’16"},

g>4 <c e>8’, 't’: "e’’1l6 c'’16 e'’8 g'’8"},

g>4 <c g>8’, 't’: "e’’1l6 c’'’16 g’'8 e’'’8"},

g>4 <c e>8’, 't’: "e’’'8 (g’''8 c’'’’'8)"},

9,8, "t’: "<c'’ e’’>8 <b’ d’'’>8 rg8"},
g>4 g8’, 't’: "d’’16 b’16 g’8 r8"},
9,8 r8’, 't’: "<c’'’ e’’>8 <b’ d’’>16 <g’ b’>16 g'8"},
r8’, 't’: "e’’16 c’’16 d’'16 b’16 g'8"},
9,8 r8’, 't’: "g’’16 e’’16 d’’16 b’16 g’ 8"},
9,8, "t’: "b’16 d’’16 g’’16 d’’'16 b'8"},
9,8 r8’, "t’: "e’’16 c¢’’16 b’16 d’’16 g’’8"},
b>4 r8’, 't’: "d’’16 b’’16 g’’16 d’’16 b’8"},
g>4 <b, d>8’, ’'t’: "d’’16 b’16 g’8 g’'’8"},

"gl6 £sl6 gl6 dl6 b,16 g,16’, 't’: "d’’8 g’4"},

' <c
'<c
7 e
'<c
'<c
'<c
SE
V<@
'<c
' <c
’c8

r'<e
V<@
'<c
' <c
'<c
1 <c
'<c
'<c
' <c
SE
"c8

"<f
4
" f4
rf£4
" £8

"fl16 el6e dl6 el6 fl6 gl6’, ’'t’': "f’’16 e’’16 d’'’16 e’’16 £''16 g’’16"},

e>16 gl6 <c e>16 gl6 <c e>16 gle6’, "t’: "e’’8 c’'’'8 g’'8"},
e>16 gl6 <c e>16 gl6 <c e>16 gl6’, ’'t’: "g’8 c’’8 e’'’8"},
e>16 gl6 <c e>16 gl6 <c e>16 gl6’, ’'t’: "g’’8 e’’8 c’’'8"},
e>4 <e g>8’, ’'t’: "c’’16 b’'16 c’'’16 e'’16 g'l6 c'’1l6"},
e>4 <c g>8’, ’'t’: "c’'’’16 b’’'16 c’’’16 g'’1l6 e’’16 c’’16"},
g>4 <c e>8’, ’'t’: "e’’16 d'’16 e'’16 g’'’1l6 c’’’16 g'’1l6"},

e>4 r8’, 't’: "g’’8 f'’16 e’’16 d’'16 c’'’'16"},

e>4

r8’,

e,

"c’’16 g’l6 e’’16 c’’16 g''16 e’’"16"},

e>16 gl6 <c e>16 gl6 <c e>16 gl6’, ’'t’: "c’'’8 g’8 e’'’8"},
e>16 gl6 <c e>16 gl6 <c e>16 gle6’, ’"t’: "g’’8 c’'’'8 e"'8"},

el e’’, v

&’ 3

"<e’ c’’>8 <e’ c’'’'>8 <e’ c’'’'>8"},

e>16 gl6 <c e>16 gl6 <c e>16 gle6’, ’"t’: "e’’8 (c’"'8 g’8)"},

e>4 <c g>8’, 't’: "g’8 (c'’8 e’’'8)"},

e>16 gl6 <c e>16 gl6 <c e>16 gl6’, "t’: "g’’8 e’’8 c’'’8"},
e>4 <c e>8’, 't’: "c’’16 b’'16 c’’16 e’’16 g'l6 c’'’16"},
e>4 r8’, 't’: "c’’’16 b’'16 c’’’16 g’'’16 e’’16 c'’16"},
g>4 <c e>8’, 't’: "e’’1l6 d’'’16 e’'’16 g’’16 c’’’16 g’'’16"},
e>4 <e g>8’, 't’: "g’’8 f''16 e’’16 d’'’16 c’'’16"},

e>4 r8’, 't’: "c’’16 g’l6e e’’16 c’’16 g'’1l6 e’’16"},

e>16 gl6 <c e>16 gl6 <c e>16 gl6’, ’'t’': "c’'’8 g’8 e’’8"},
e>16 gl6 <c e>16 gl6 <c e>16 gle6’, "t’: "g’’8 c’’8 e’'’8"},
c8 c8’, '"t’: "<e’ c’'’'>8 <e’ c'’>8 <e’ c’'’'>8"},

a>4 <g d’">8", 't’: "d’’16 f''16 d’'’16 £'716 b’1l6 d'’1l6e"},
g8’, ’t’: "d’’16 f£’'16 a’’l6 f£'716 d’’16 b’1l6"},

g8’, ’'t’: "d’'’16 £'’16 a’le d’'’16 b’l6e d’'’1le"},

g8’, 't’: "d’’16 (cs’’16) d’'16 f£'’16 g’l6 b’1l6"},

d8 q87’ Itl: llf778 d118 gll8"},

"f16 el6 d8 g8’, 't’: "f’’l6 e’’16 d’'8 g’'’8"},

" f4
rf4
" f4
rf4

g8, 't’: "£7716 e’’16 d’’16 c’’16 b'16 d’’16"},
g8, "t’: "£/716 d’’16 a’8 b’'8"},

g8, "t’: "£7716 a’’16 a’8 b’16 d’’16"},

g8’, 't’: "a’8 £/716 d’/16 a’l6 b’16"},

7.1. The materials

75

Abjad Documentation, Release 2.12

{"b": "c8 9,8 ¢c,8’, "t’: "c'’4 r8"},
{"b’: "c4 ¢,8", 't’: "c'’'8 c’8 r8"},
] 4

We can then use the p () function we saw earlier to “build” the treble and bass components of a measure like this:

def make_mozart_measure (measure_dict) :
parse the contents of a measure definition dictionary

wrap the expression to be parsed inside a LilyPond { } block
treble = p(’"{{ {} }}’.format (measure_dict[’'t’]))
bass = p("{{ {} }}’.format (measure_dict[’'b"]))

return treble, bass

Let’s try with a measure-definition of our own:

>>> my_measure_dict = {'b’: r’cd4d "\trill r8’, ’'t’: "e’’8 (c’'’'8 g’'8
>>> treble, bass = make_mozart_measure (my_measure_dict)

>>> f (treble)
{
e’’8 (
c’’8
g’8)

>>> f (bass)

c4 "\trill
r8

)"}

Now with one from the Mozart measure collection defined earlier. We’ll grab the very last choice for the very last

measure:

>>> my_measure_dict = make_mozart_measure_corpus () [-1][-1]
>>> treble, bass = make_mozart_measure (my_measure_dict)

>>> f (treble)
c’’8
c’8
r8

>>> f (bass)

c4
c, ©

7.2 The structure

After storing all of the musical fragments into a corpus, concatenating those elements into a musical structure

is relatively trivial. We’ll use the choice () function from Python’s random module.

randomly selects one element from an input list.

>>> import random

>>> my_list = [1, 'b’, 3]

>>> my_result = [random.choice(my_list) for i in range (20)

>>> my_result

[3, 3, 'b’, 1, '"b’, 'b", 3, 1, 'b", 'b", 3, 'b’, 1, 3, 'b’, 1, 3, 3,

3,

random.choice ()

Our corpus is a list comprising sixteen sublists, one for each measure in the minuet. To build our musical structure,
we can simply iterate through the corpus and call choice on each sublist, appending the chosen results to another

76 Chapter 7. Mozart: Musikalisches Wiirfelspiel

http://docs.python.org/2.7/library/random.html#random.choice
http://docs.python.org/2.7/library/random.html#random.choice

Abjad Documentation, Release 2.12

list. The only catch is that the eighth measure of our minuet is actually the first-and-second-ending for the repeat
of the first phrase. The sublist of the corpus for measure eight contains only the first and second ending definitions,
and both of those measures should appear in the final piece, always in the same order. We’ll have to intercept that
sublist while we iterate through the corpus and apply some different logic.

The easist way to intercept measure eight is to use the Python builtin enumerate, which allows you to iterate
through a collection while also getting the index of each element in that collection:

def choose_mozart_measures() :

measure_corpus = make_mozart_measure_corpus ()
chosen_measures = []
for i, choices in enumerate (measure_corpus) :
if i == 7: # get both alternative endings for mm. 8
chosen_measures.extend (choices)
else:
choice = random.choice (choices)
chosen_measures.append (choice)
return chosen_measures

Note: In choose_mozart_measures we test for index 7, rather then 8, because list indices count from 0 instead of

1.

The result will be a seventeen-item-long list of measure definitions:

>>> choices = choose_mozart_measures ()
>>> for i, measure in enumerate (choices) :

O J oy Ul bW NP O

e e e e)
o Ul WN RO

print i, measure

{’'b’: "<c e>4 r8’, 't’: "c’’16 b'16 c’’16 e’’16 g’'l6 c’’1l6"}

{'b’: "<c e>4 r8’, 't’: "c’’8 g’8 e’’8"}

{(’b’: "b,4 r8’, 't’: "d’’8 (b’8 g’8)"}

{'b": "<e g>4 r8", ’'t’: "c’'’8 e’’16 c’'’16 g’'8"}

{"b’: "c4 r8", 't’: "d’’16 cs’’16 d’'’16 fs’’16 a’'’l6 fs’’16"}

{'b": "<b, d>4 r8’, 't’: "g’’8 b’’16 g’’16 d’'’16 b’le"}

{'b’: "c8 d8 d,8’, 't’: "a’l6 e’’16 d’'16 g’’16 fs’’16 a’’le6e"}

{'b’: "g,8 gl6 £f16 el6 dl6’, ’'t’: "<g’ b’ d’'’ g’'’>4 r8"}

{'b’: "g,8 bl6 gl6 fsl6 el6’, 't’: "<g’ b’ d’'’ g’’'>4 r8"}

{'b’: ’'<d fs>4 <c fs>8’, 't’: "a’’8 (fs’’8 4d’'’8)"}

{Ibl: Ib,4 r8l, Itl: llg!!8 blll6 dll!16 dll8ll}

{"b’: "<c g>4 <c e>8’, 't’: "e’’8 (g'’8 c’’’8)"}

{"b": 98 g,8 r8", ’'t’: "g’’16 e’’16 d’'16 b'16 g’'8"}

{"b’: "<c e>16 gl6 <c e>16 gl6 <c e>1l6 gle’, 't’: "g’’8 c’'’8 e’'’8"}
{’b’: "<c e>16 gl6 <c e>16 gl6 <c e>16 gle’, ’'t’: "g’'’8 e’’'8 c’’'8"}
{'b’: "f4 g8’, "t’: "f’'’16 d’’16 a’'8 b’8"}

{'b’: "c4 ¢,8", 't’: "c’'’8 c’8 r8"}

7.3 The score

Now that we have our raw materials, and a way to organize them, we can start building our score. The tricky
part here is figuring out how to implement LilyPond’s repeat structure in Abjad. LilyPond structures its repeats
something like this:

\repeat volta n {

music to be repeated

\alternative {

{ ending 1 }
{ ending 2 }
{ ending n }

.music after the repeat...

7.3. The score 77

Abjad Documentation, Release 2.12

What you see above is really just two containers, each with a little text (“repeat volta n” and “alterna-
tive”) prepended to their opening curly brace. To create that structure in Abjad, we’ll need to use the
LilyPondCommandMark class, which allows you to place LilyPond commands like “break” relative to any
score component:

>>> con = Container("c’4 d’'4 e’4 f’'4")

>>> mark = marktools.LilyPondCommandMark ('before-the-container’, ’"before’) (con)

>>> mark = marktools.LilyPondCommandMark (’after—-the-container’, ’after’) (con)

>>> mark = marktools.LilyPondCommandMark (' opening-of-the-container’, ’opening’) (con)
>>> mark = marktools.LilyPondCommandMark (' closing-of-the-container’, ’closing’) (con)
>>> mark = marktools.LilyPondCommandMark (' to-the-right-of-a-note’, ’right’) (con[2])

>>> f (con)
\before-the-container
{
\opening-of-the-container
c’4
d’4
e’4 \to-the-right-of-a-note
fr4
\closing-of-the-container
}

\after-the-container

Notice the second argument to each LilyPondCommandMark above, like before and closing. These are format
slot indications, which control where the command is placed in the LilyPond code relative to the score element it
is attached to. To mimic LilyPond’s repeat syntax, we’ll have to create two LilyPondCommandMark instances,
both using the “before” format slot, insuring that their command is placed before their container’s opening curly
brace.

Now let’s take a look at the code that puts our score together:
def make_mozart_score() :

score_template = scoretemplatetools.TwoStaffPianoScoreTemplate ()
score = score_template ()

select the measures to use
choices = choose_mozart_measures ()

create and populate the volta containers

treble_volta = Container ()

bass_volta = Container()

for choice in choices[:7]:
treble, bass = make_mozart_measure (choice)
treble_volta.append(treble)
bass_volta.append (bass)

add marks to the volta containers
marktools.LilyPondCommandMark (
"repeat volta 2’, ’before’
) (treble_volta)
marktools.LilyPondCommandMark (
"repeat volta 2’, ’'before’
) (bass_volta)

add the volta containers to our staves
score[’RH Voice’] .append(treble_volta)
score[’LH Voice’] .append(bass_volta)

create and populate the alternative ending containers

treble_alternative = Container ()

bass_alternative = Container ()

for choice in choices[7:9]:
treble, bass = make_mozart_measure (choice)
treble_alternative.append(treble)
bass_alternative.append (bass)

add marks to the alternative containers
marktools.LilyPondCommandMark (
"alternative’, ’before’
) (treble_alternative)

78 Chapter 7. Mozart: Musikalisches Wiirfelspiel

Abjad Documentation, Release 2.12

marktools.LilyPondCommandMark (
"alternative’, ’"before’
) (bass_alternative)

add the alternative containers to our staves
score[’RH Voice’] .append(treble_alternative)
score[’LH Voice’] .append(bass_alternative)

create the remaining measures

for choice in choices[9:]:
treble, bass = make_mozart_measure (choice)
score[’RH Voice’] .append(treble)
score[’LH Voice’].append (bass)

add marks

contexttools.TimeSignatureMark ((3, 8)) (score[’RH Staff’])
marktools.BarLine ('’ |.’) (score[’RH Voice’][-1])
marktools.BarLine ('’ |.’) (score[’LH Voice’][-1])

remove the old, default Piano InstrumentMark attached to the PianoStaff
and add a custom instrument mark
contexttools.detach_instrument_marks_attached_to_component (score[’Piano Staff’])
contexttools.InstrumentMark (

"Katzenklavier’, ’'kk.’,

target_context = scoretools.PianoStaff

) (score[’Piano Staff’])

return score

>>> score = make_mozart_score ()
>>> show (score)

r
I
iy
;

atzenklavier
.3 { | F r -— -
—f 7 s 1 | T —
| ! I I
T ebe e £ o pfetf
Fal 1 Ll | r 1 T L IP IF = IF

I
Rl
~N

3]
T
T‘.
/

-

%
N
niy
aes
druny
oy
i

o

Note: Our instrument name got cut off! Looks like we need to do a little formatting. Keep reading...

7.4 The document

As you can see above, we’ve now got our randomized minuet. However, we can still go a bit further. Lily-
Pond provides a wide variety of settings for controlling the overall look of a musical document, often through its
header, layout and paper blocks. Abjad, in turn, gives us object-oriented access to these settings through the its
lilypondfiletools module.

We’ll use abjad.tools.lilypondfiletools.make_basic_lilypond_file() to wrap our

7.4. The document 79

Abjad Documentation, Release 2.12

Score inside a LilyPondFile instance. From there we can access the other “blocks” of our document to
add a title, a composer’s name, change the global staff size, paper size, staff spacing and so forth.

def make_mozart_lilypond_file():

score = make_mozart_score ()

lily = lilypondfiletools.make_basic_lilypond_file (score)
title = markuptools.Markup (r’\bold \sans "Ein Musikalisches Wuerfelspiel"’)
composer = schemetools.Scheme ("W. A. Mozart (maybe?)")
lily.global_staff_size = 12

lily.header_block.title = title

lily.header_block.composer = composer
lily.layout_block.ragged_right = True
lily.paper_block.markup_system_spacing__basic_distance = 8
lily.paper_block.paper_width = 180

return lily

>>> lilypond_file = make_mozart_lilypond_file ()
>>> print lilypond_file
LilyPondFile (Score-"Two-Staff Piano Score"<<1>>)

>>> print lilypond_file.header_block
HeaderBlock (2)

>>> f(lilypond_file.header_block)

\header {
composer = #"W. A. Mozart (maybe?)"
title = \markup {
\bold

\sans
"Ein Musikalisches Wuerfelspiel"

>>> print lilypond_file.layout_block
LayoutBlock (1)

>>> f (lilypond_file.layout_block)
\layout {

ragged-right = ##t

>>> print lilypond_file.paper_block
PaperBlock (2)

>>> f(lilypond_file.paper_block)
\paper {

markup-system-spacing #’basic-distance = #8
paper-width = #180

And now the final result:

>>> show(lilypond_file)

Ein Musikalisches Wuerfelspiel
W A- Mozart (maybe?)
 F—

- afta
gaple T tls

5%%55#%-- SiS=ESSiSSSS=rEs S e ;
Katzenklavier _ _ . . , =H=H _.=‘=H
1 i T
=
E?ﬁi Pie o _eofe_ . Y N = D
Nia == P e S
| k. [['l
L0 sl SIpp[Efie OiF g ladaire fie
T ! ¥ I I Ly 4
80 Chapter 7. Mozart: Musikalisches Wiirfelspiel

CHAPTER
EIGHT

PART: CANTUS IN MEMORY OF
BENJAMIN BRITTEN

Note: Explore the abjad/demos/part/ directory for the complete code to this example, or import it into your
Python session directly with:

* from abjad.demos import part

Let’s make some imports:

>>> import copy
>>> from abjad import x

def make_part_lilypond_file():

score_template = PartCantusScoreTemplate ()
score = score_template ()

add_bell music_to_score (score)
add_string _music_to_score (score)

apply_bowing_marks (score)
apply_dynamic_marks (score)
apply_expressive_marks (score)
apply_page_breaks (score)
apply_rehearsal_marks (score)
apply_final bar_lines (score)

configure_score (score)
lilypond_file = lilypondfiletools.make_basic_lilypond_file (score)
configure_lilypond_file (lilypond_file)

return lilypond_file

8.1 The score template

class PartCantusScoreTemplate (scoretemplatetools.ScoreTemplate) :
INITIALIZER

def __ _init__ (self):
pass

SPECIAIL METHODS
def _ call_ (self):

make bell voice and staff
bell_voice = voicetools.Voice (name=’'Bell Voice’)

81

Abjad Documentation, Release 2.12

bell_staff = stafftools.Staff ([bell_voice], name='Bell Staff’
contexttools.ClefMark ('treble’) (bell_staff)
contexttools.InstrumentMark (' Campana in La’, ’Camp.’) (bell_staff)
contexttools.TempoMark ((1, 4), (112, 120)) (bell_staff)
contexttools.TimeSignatureMark ((6, 4)) (bell_staff)

make first violin voice and staff
first_violin_voice = voicetools.Voice (name='First Violin Voice’)
first_violin_staff = stafftools.Staff([first_violin_voice], name=’'First Violin Staff’
contexttools.ClefMark ('treble’) (first_violin_staff)
instrumenttools.Violin (
instrument_name_markup=’'Violin I’,
short_instrument_name_markup="V1l. I’
) (first_violin_staff)

make second violin voice and staff
second_violin_voice = voicetools.Voice (name=’Second Violin Voice’)
second_violin_staff = stafftools.Staff([second_violin_voice], name=’Second Violin Staff’
contexttools.ClefMark ('treble’) (second_violin_staff)
instrumenttools.Violin (
instrument_name_markup='Violin II’,
short_instrument_name_markup='V1l. II'
) (second_violin_staff)

make viola voice and staff

viola_voice = voicetools.Voice (name=’'Viola Voice’)

viola_staff = stafftools.Staff([viola_voice], name='Viola Staff’)
contexttools.ClefMark (‘alto’) (viola_staff)
instrumenttools.Viola () (viola_staff)

make cello voice and staff
cello_voice = voicetools.Voice (name=’'Cello Voice’)
cello_staff = stafftools.Staff([cello_voice], name=’'Cello Staff’)
contexttools.ClefMark (' bass’) (cello_staff)
instrumenttools.Cello (
short_instrument_name_markup='Vc.’
) (cello_staff)

make bass voice and staff
bass_voice = voicetools.Voice (name=’'Bass Voice’)
bass_staff = stafftools.Staff ([bass_voice], name=’Bass Staff’
contexttools.ClefMark ('bass’) (bass_staff)
instrumenttools.Contrabass (
short_instrument_name_markup='Cb.’
) (bass_staff)

make strings staff group
strings_staff_group = scoretools.StaffGroup ([

first_violin_staff,

second_violin_staff,

viola_staff,

cello_staff,

bass_staff,

]I

name=’'Strings Staff Group’,

)

make score

score = scoretools.Score ([
bell_staff,
strings_staff_group,
1,
name=’'Pdart Cantus Score’

)

return P4rt Cantus score
return score

82 Chapter 8. Part: Cantus in Memory of Benjamin Britten

Abjad Documentation, Release 2.12

8.2 The bell music

def add _bell music_to_score(score):
bell_voice = score[’Bell Voice’]

def make_bell phrase() :

phrase = []

for _ in range(3):
phrase.append (measuretools.Measure ((6, 4), r"r2. a’2. \laissezVibrer")
phrase.append (measuretools.Measure ((6, 4), "R1.7))

for _ in range(2):
phrase.append (measuretools.Measure ((6, 4), "R1.7))

return phrase

for _ in range(11l):
bell_voice.extend (make_bell _phrase())

for _ in range(19):
bell voice.append(measuretools.Measure((6, 4), 'R1.7))

bell voice.append (measuretools.Measure((6,4), r"a’l. \laissezVibrer"))

8.3 The string music

Creating the music for the strings is a bit more involved, but conceptually falls into two steps. First, we’ll proce-
durally generate basic pitches and rhythms for all string voices. Then, we’ll make edits to the generated material
by hand. The entire process is encapsulated in the following function:

def add_string music_to_score (score) :

generate some pitch and rhythm information

pitch_contour_reservoir = create_pitch_contour_reservoir ()

shadowed_contour_reservoir = shadow_pitch_contour_reservoir (
pitch_contour_reservoir)

durated_reservoir = durate_pitch_contour_reservoir (
shadowed_contour_reservoir)

add six dotted-whole notes and the durated contours to each string voice
for instrument_name, descents in durated_reservoir.iteritems () :
instrument_voice = scorel[’ Voice’ % instrument_name]
instrument_voice.extend("R1. R1. R1. R1. R1. R1.")
for descent in descents:
instrument_voice.extend (descent)

apply instrument-specific edits
edit_first_violin_voice (score, durated_reservoir)
edit_second_violin_voice (score, durated_reservoir)
edit_viola_voice (score, durated_reservoir)
edit_cello_voice (score, durated_reservoir)
edit_bass_voice (score, durated_reservoir)

chop all string parts into 6/4 measures
for voice in iterationtools.iterate_voices_in_expr (score[’Strings Staff Group’]):

for shard in componenttools.split_components_at_offsets(voicel[:],
[(6, 4)], cyclic=True) :
measuretools.Measure((6, 4), shard)

The pitch material is the same for all of the strings: a descending a-minor scale, generally decorated with diads.
But, each instrument uses a different overall range, with the lower instrument playing slower and slower than the
higher instruments, creating a sort of mensuration canon.

For each instrument, the descending scale is fragmented into what we’ll call “descents”. The first descent uses
only the first note of that instrument’s scale, while the second descent adds the second note, and the third another.
We’ll generate as many descents per instruments as there are pitches in its overall scale:

8.2. The bell music 83

Abjad Documentation, Release 2.12

def create_pitch_contour_reservoir():

scale = tonalitytools.Scale(’a’, 'minor’)

pitch_ranges = {
"First Violin’: pitchtools.PitchRange(("c’", "a’’’"")),
"Second Violin’: pitchtools.PitchRange((’a’, "a’’")),
"Viola’: pitchtools.PitchRange((’'e’, "a’'")),
"Cello’: pitchtools.PitchRange((’a,’, 'a’)),
"Bass’: pitchtools.PitchRange(('c’, "a’)),

reservoir = {}

for instrument_name, pitch_range in pitch_ranges.iteritems () :
pitch_set = scale.create_named_chromatic_pitch_set_in_pitch_range (pitch_range)
pitches = sorted(pitch_set.named_chromatic_pitches, reverse=True)
pitch_descents = []
for i in xrange (len(pitches)):

descent = tuple(pitches[:i + 1]
pitch_descents.append (descent)
reservoir[instrument_name] = tuple (pitch_descents)

return reservoir

Here’s what the first 10 descents for the first violin look like:

>>> reservoir = create_pitch_contour_reservoir ()

>>> for i in range(10):
descent = reservoir[’/First Violin’][i]
print ’ ’.join(str(x) for x in descent)

a!l‘l

ar’’r g’

alll glll f!!!

arrr o grrr o frrroerty

alll gl!! f!!! elll d!!!

ar’r o grrr o frrroerrr o grrr o crrd

all’ g”! f!!! el” dl!! c!!l bl’

a!ll glll fl!! elll dlll C!!! bll all

LA LAAANS LA LAA AN AN M o LA ANE-LAANNe L

a!ll glll f!!! eIII dll! c!!l bII all g!! fII

Next we add diads to all of the descents, except for the viola’s. We’ll use a dictionary as a lookup table, to tell us
what interval to add below a given pitch class:

def shadow_pitch_contour_reservoir (pitch_contour_reservoir) :

shadow_pitch_lookup = {

pitchtools.NamedDiatonicPitchClass(’a’): -5, # add a P4 below
pitchtools.NamedDiatonicPitchClass ('g’) -3, # add a m3 below
pitchtools.NamedDiatonicPitchClass (' f’): -1, # add a m2 below
pitchtools.NamedDiatonicPitchClass('e’): -4, # add a M3 below
pitchtools.NamedDiatonicPitchClass(’d’): -2, # add a M2 below
pitchtools.NamedDiatonicPitchClass (’c’) -3, # add a m3 below
pitchtools.NamedDiatonicPitchClass ('b’): -2, # add a M2 below

shadowed_reservoir = {}

for instrument_name, pitch_contours in pitch_contour_reservoir.iteritems() :
The viola does not receive any diads

if instrument_name == ’'Viola’:
shadowed_reservoir[’Viola’] = pitch_contours
continue

shadowed_pitch_contours = []

for pitch_contour in pitch_contours[:-1]:
shadowed_pitch_contour = []
for pitch in pitch_contour:
pitch_class = pitch.named_diatonic_pitch_class
shadow_pitch = pitch + shadow_pitch_lookup[pitch_class]
diad = (shadow_pitch, pitch)

84 Chapter 8. Part: Cantus in Memory of Benjamin Britten

Abjad Documentation, Release 2.12

shadowed_pitch_contour.append(diad)
shadowed_pitch_contours.append(tuple (shadowed_pitch_contour))

treat the final contour differently: the last note does not become a diad
final_shadowed_pitch_contour = []
for pitch in pitch_contours([-1][:-1]:

pitch_class pitch.named_diatonic_pitch_class

shadow_pitch = pitch + shadow_pitch_lookup[pitch_class]

diad = (shadow_pitch, pitch)

final_shadowed_pitch_contour.append (diad)
final_shadowed_pitch_contour.append(pitch_contours[-1][-1]
shadowed_pitch_contours.append (tuple (final_shadowed_pitch_contour))

shadowed_reservoir[instrument_name] = tuple (shadowed_pitch_contours)

return shadowed_reservoir

Finally, we’ll add rhythms to the pitch contours we’ve been constructing. Each string instrument plays twice as
slow as the string instrument above it in the score. Additionally, all the strings start with some rests, and use a
“long-short” pattern for their rhythms:

def durate_pitch_contour_reservoir (pitch_contour_reservoir) :

instrument_names = [
"First Violin’,
’Second Violin’,
'Viola’,
"Cello’,
’Bass’,

]
durated_reservoir = {}

for i, instrument_name in enumerate (instrument_names) :
long_duration = Duration(l, 2) % pow(2, 1i)
short_duration = long_duration / 2
rest_duration = long_duration * Multiplier (3, 2)

div = rest_duration // Duration(3, 2)

o

mod = rest_duration % Duration (3, 2)

initial_rest = resttools.MultiMeasureRest ((3, 2)) = div
if mod:
initial_rest += resttools.make_rests (mod)

durated_contours = [tuple(initial_rest)]
pitch_contours = pitch_contour_reservoir[instrument_name]
durations = [long_duration, short_duration]
counter = 0
for pitch_contour in pitch_contours:
contour = []

for pitch in pitch_contour:
contour.extend (leaftools.make_leaves ([pitch], [durations[counter]]))
counter (counter + 1) % 2

durated_contours.append (tuple (contour))

durated_reservoir[instrument_name] = tuple (durated_contours)

return durated_reservoir

Let’s see what a few of those look like. First, we’ll build the entire reservoir from scratch, so you can see the
process:

>>> pitch_contour_reservoir = create_pitch_contour_reservoir ()
>>> shadowed_contour_reservoir = shadow_pitch_contour_reservoir (pitch_contour_reservoir)
>>> durated_reservoir = durate_pitch_contour_reservoir (shadowed_contour_reservoir)

Then we’ll grab the sub-reservoir for the first violins, taking the first ten descents (which includes the silences
we’ve been adding as well). We’ll label each descent with some markup, to distinguish them, throw them into a
Staff and give them a 6/4 time signature, just so they line up properly.

8.3. The string music 85

Abjad Documentation, Release 2.12

>>>
>>>

>>>
>>>
>>>

descents
for i,
markup

staff
time_signature
show (staff)

2

@ @

descent in enumerate (descents([l:],
markuptools.Markup (r’ \rounded-box \bold {}’.format (i),

T (=)

durated_reservoir[’First Violin’][:10]

1) 3

Staff (sequencetools.flatten_sequence (descents))
contexttools.TimeSignatureMark ((6,

4)) (staff)

Up) (descent [0])

0
£

(=)

= EEEE_#_ $ -~ £§ G ; B 5
& == == ESE T PSR CET Btz
o FLa Ll 1 1 | | | | | | 1l | 1 1
g! 1) -t Ll 1 1 | 1 || 1 | | | 1 I |
. A | 1 | | 1 L) |
u = 1 1 | | 1 | |
9)
E e £ 8 o2 £ 8 o2
B o = 2 s - 5 B S 1{51
| | l | | | 1l | | | | - | | |)| 1 8
1 1 Ll | 1l 1 | | - 1 1 | 1 1
[fan | T I L - 1 1 t 1T 1
174 1 1 1 1 1 1 |
LY
Let’s look at the second violins too:
>>> descents = durated_reservoir[’Second Violin’][:10]
>>> for i, descent in enumerate (descents([l:], 1):
markup = markuptools.Markup (r’ \rounded-box \bold {}’.format (i), Up) (descent[0])
>>> staff = Staff (sequencetools.flatten_sequence (descents))
>>> time_signature = contexttools.TimeSignatureMark ((6, 4)) (staff)
>>> show (staff)
f - F o & o - T g - =) =
1" - L] L%] o N] S . S] AL # B &] AL = o - |
A L I | I i | I ~ I | |
5 I | I I | I I | |
AN P 3 I | I I | I I I 1
el
g
[4) i & = 1 P - | - ”
o = 1 | &] F’ |] = 1) I] [# [S] = T | [] I 1
A 1 1 | &] [il | &] 1 I |] ol 14y = I 1
[s 1 1 1 [| &) 1 [I I 1T 4% For I 1
AN 1 1 1 [1 1 L I 1 T I 1
o f '
Th o -) o
W 4ir- [| —n 1l LAY " | LT s 1l _—n | |
Fal o LELF-" Fo”) | P 1 1l) LV o | P |
[| |) Ly e 1 1l 1l o L Lr- e | -
AN 1 | | | 1 1 1 | o 1 8%
[| o

And, last we’ll take a peek at the violas. They have some longer notes, so we’ll split their music cyclically every
3 half notes, just so nothing crosses the bar lines accidentally:

>>> descents = durated_reservoir[’Viola’][:10]
>>> for i1, descent in enumerate (descents([1:], 1):
markup = markuptools.Markup (r’ \rounded-box \bold {}’.format (i), Up) (descent[0])
>>> staff = Staff (sequencetools.flatten_sequence (descents))
>>> shards = componenttools.split_components_at_offsets(staff[:], [(3, 2)], cyclic=True)
>>> time_signature = contexttools.TimeSignatureMark ((6, 4)) (staff)
>>> show (staff)
86 Chapter 8. Pért: Cantus in Memory of Benjamin Britten

Abjad Documentation, Release 2.12

f I ; ;
" - L] T T —1 T I | | T |
.] — I — | T—1 I I | T I |
s — 2% I [& X3 7= — % —t P= - —a= = | s X |
e T | = —<* 15 —<* LS &] I 1
e)
0 5) . (6)
" | | | | 1l | | l 1l | |
¥ il | | | | | 1 Il | L 1l | | 1l |
[Fan F+4 & | | | [& X | i%. | | L | | | | l i» |
A% — 1 [& X1 [i | - S | L& X [i 1 1 l 1
0y, ““» - Lo K] &
19 4 Iﬂ
" 4 | T — | | T | T — |
F il 1 1 1 1 1 1 1 I 1 1 1 I 1
| Fan¥) = 1 1 I 1 1 | [&] | =) = 1 1 I 1
AN — il [&] | | FEN [| = 1 1 | | " [&] 1 > [| = 1
e/ — LS] e ﬁ. — OF
29 p .
"4 T T — T I T T I | |
rai — I 1 | I I T I | |
[an T . X = | I I 1 1 T—T |
tf - Iﬁi I = © [& X 7 E—= | E— - 1 T—1 1
- e 3 Y e e -
3 5 (9 .
" 4 T—1 T T | | I T | |
F al | | | | | | | i i | | |
| Fan [& X1 |~ “» | | | | | i i | | | |
EJIJ' - — | I & X Fo”l > 1 o 1 .'_'JI — 1 1 _dl_ | 1
— ¥ e = =1
— LF-)
You can see how each part is twice as slow as the previous, and starts a little bit later too.
8.4 The edits
def edit_first_violin_voice (score, durated_reservoir):
voice = score[’First Violin Voice’]
descents = durated_reservoir[’/First Violin’]
copied_descent = componenttools.copy_components_and_remove_spanners (descents[-1]
voice.extend (copied_descent)
final_sustain_rhythm = [(6, 4)] * 43 + [(1, 2)]
final_sustain_notes = notetools.make_notes(["c’"], final_sustain_rhythm)
voice.extend (final_sustain_notes)
tietools.TieSpanner (final_sustain_notes)
voice.extend ('rd4d r2.")
def edit_second_violin_voice (score, durated_reservoir):
voice = score[’Second Violin Voice’]
descents = durated_reservoir[’Second Violin’]
copied_descent = list (componenttools.copy_components_and_remove_spanners (descents[-1]))

copied_descent[-1].written_duration = durationtools.Duration(l, 1)

copied_descent.append (notetools.Note(’"a2’))
for leaf in copied_descent:
marktools.Articulation (’accent’) (leaf)
marktools.Articulation(’tenuto’) (leaf)
voice.extend (copied_descent)

final_sustain = []
for _ in range(32):

final sustain.append(notetools.Note(’al.’))
final_sustain.append (notetools.Note(’a2’))
marktools.Articulation (’accent’) (final_sustain[0])

marktools.Articulation(’tenuto’) (final_sustain[0])

voice.extend (final_sustain)
tietools.TieSpanner (final_sustain)
voice.extend ('rd r2.")

8.4. The edits

87

Abjad Documentation, Release 2.12

def edit_viola_voice(score, durated_reservoir) :

voice = score[’Viola Voice’]
descents = durated_reservoir[’Viola’]

for leaf in descents[-1]:
marktools.Articulation (’accent’) (leaf)
marktools.Articulation (’tenuto’) (leaf)
copied_descent = componenttools.copy_components_and_remove_spanners (descents[-1]
for leaf in copied_descent:
if leaf.written_duration == durationtools.Duration (4, 4):
leaf.written_duration = durationtools.Duration (8, 4)
else:
leaf.written_duration = durationtools.Duration (4, 4)
voice.extend (copied_descent)

bridge = notetools.Note(’el’)
marktools.Articulation(’tenuto’) (bridge)
marktools.Articulation (’accent’) (bridge)
voice.append (bridge)

final_sustain_rhythm = [(6, 4)] % 21 + [(1, 2)]

final_sustain_notes = notetools.make_notes([’e’], final_sustain_rhythm)
marktools.Articulation (’accent’) (final_sustain_notes[0])
marktools.Articulation(’tenuto’) (final_sustain_notes[0]

voice.extend (final_sustain_notes)
tietools.TieSpanner (final_sustain_notes)
voice.extend('r4d r2.")

def edit_cello_voice (score, durated_reservoir):

voice = score[’Cello Voice’]
descents = durated_reservoir[’Cello’]

tie_chain = tietools.get_tie_chain(voice[-1])
for leaf in tie_chain.leaves:

parent = leaf.parent
index = parent.index (leaf)
parent [index] = chordtools.Chord([’e,’, 'a,’], leaf.written_duration)
unison_descent = componenttools.copy_components_and_remove_spanners (voice[-len (descents[-1]):])

voice.extend (unison_descent)

for chord in unison_descent:
index = chord.parent.index (chord)
parent [index] = notetools.Note (chord.written_pitches[1l], chord.written_duration)
marktools.Articulation (’accent’) (parent [index])
marktools.Articulation (’tenuto’) (parent [index])

voice.extend(’a,l1. ~ a,2 b,1 ~ b,1. ~ b,1. a,1. ~ a,1. ~ a,1. ~a,1. ~ a,1l. ~ a,2 rd r2.")

def edit_bass_voice (score, durated_reservoir):
voice = score[’Bass Voice’]

voice[-3:] = ’'<e, e>\maxima <d, d>\longa <c, c>\maxima <b,>\longa <a,>\maxima r4 r2.’

8.5 The marks

Now we’ll apply various kinds of marks, including dynamics, articulations, bowing indications, expressive in-
structures, page breaks and rehearsal marks.

We’ll start with the bowing marks. This involves creating a piece of custom markup to indicate rebowing. We ac-
complish this by aggregating together some markuptools.Markup Command and markuptools.MusicGlyph objects.
The completed markuptools.Markup object is then copied and attached at the correct locations in the score.

Why copy it? A Mark can only be attached to a single Component. If we attached the original piece of markup
to each of our target components in turn, only the last would actually receive the markup, as it would have be
detached from the preceding components.

88 Chapter 8. Part: Cantus in Memory of Benjamin Britten

Abjad Documentation, Release 2.12

Let’s take a look:

def apply_bowing_marks (score) :

apply alternating upbow and downbow for first two sounding bars
of the first violin
for measure in score[’First Violin Voice’][6:8]:
for i, chord in enumerate(iterationtools.iterate_chords_in_expr (measure)) :

sleg

$ 2 ==

marktools.Articulation (’ downbow’) (chord)
else:
marktools.Articulation (" upbow’) (chord)

create and apply rebowing markup

rebow_markup

= markuptools.Markup (

markuptools.MarkupCommand (
"concat’, [

1))

markuptools.MusicGlyph (’ scripts.downbow’),
markuptools.MarkupCommand (" hspace’, 1),
markuptools.MusicGlyph (’ scripts.upbow’),

copy .copy (rebow_markup) (score[’First Violin Voice’][64][0])
copy .copy (rebow_markup) (score[’ Second Violin Voice’][75][01)
copy .copy (rebow_markup) (score[’Viola Voice’][86][0]

After dealing with custom markup, applying dynamics is easy. Just instantiate and attach:

def apply_dynamic_marks (score) :

voice = score[’Bell Voice’]
contexttools.DynamicMark (' ppp’) (voice[0][1]
contexttools.DynamicMark ("pp’) (voice[8][1])
contexttools.DynamicMark ("p’) (voice[18][11])
contexttools.DynamicMark (‘mp’) (voice[26] [1]
contexttools.DynamicMark (‘mf’) (voice[34][1])
contexttools.DynamicMark (' £/) (voice[42][1]
contexttools.DynamicMark (" ££’) (voice[52] [1])
contexttools.DynamicMark (" £££’) (voice[60][1])
contexttools.DynamicMark (" ££’) (voice[68] [1])
contexttools.DynamicMark (' £7) (voice[76][1])
contexttools.DynamicMark (‘mf’) (voice[84][1])
contexttools.DynamicMark ("pp’) (voice[-1]1[0])
voice = score[’First Violin Voice’]
contexttools.DynamicMark (" ppp’) (voice[6] [1])
contexttools.DynamicMark ("pp’) (voice[15] [0])
contexttools.DynamicMark ("p’) (voice[22][3])
contexttools.DynamicMark (‘mp’) (voice[31][0])
contexttools.DynamicMark ("mf’) (voice[38]1[3])
contexttools.DynamicMark (" £7) (voice[47][0])
contexttools.DynamicMark (' ££7) (voice[55][2])
contexttools.DynamicMark (' £££’) (voice[62] [2])
voice = score[’Second Violin Voice’]
contexttools.DynamicMark ("pp’) (voice[7][0])
contexttools.DynamicMark ("p’) (voice[12][0])
contexttools.DynamicMark ("p’) (voice[16][0])
contexttools.DynamicMark (‘mp’) (voice[25][1])
contexttools.DynamicMark (‘mf’) (voice[34][1])
contexttools.DynamicMark (" £7) (voice[44][1])
contexttools.DynamicMark (" ££7) (voice[54]11[0]
contexttools.DynamicMark (' £££") (voice[62] [1])
voice = score[’Viola Voice’]
contexttools.DynamicMark ("p’) (voice[8][0])
contexttools.DynamicMark (‘mp’) (voice[19] [1])
contexttools.DynamicMark (‘mf’) (voice[30][0])
contexttools.DynamicMark (" £’) (voice[36][0])
contexttools.DynamicMark (" £7) (voice[42] [0])
contexttools.DynamicMark (" ££7) (voice[52]11[01])
contexttools.DynamicMark (" £££’) (voice[62] [0])
voice = score[’Cello Voice’]

8.5. The marks

89

Abjad Documentation, Release 2.12

contexttools.DynamicMark ("p’) (voice[10][0])
contexttools.DynamicMark (‘mp’) (voice[21] [0])
contexttools.DynamicMark (‘mf’) (voice[31][0])
contexttools.DynamicMark (" £’) (voice[43][01])
contexttools.DynamicMark (" ££’) (voice[52] [1])
contexttools.DynamicMark (' ££ff’) (voice[62] [0])

voice = score[’Bass Voice’]
contexttools.DynamicMark (‘mp’) (voice[14] [0])
contexttools.DynamicMark (‘mf’) (voice[27][0])
contexttools.DynamicMark (" £’) (voice[39] [0])
contexttools.DynamicMark (" ££’) (voice[51] [0])
contexttools.DynamicMark (' ££ff’) (voice[62][0])

We apply expressive marks the same way we applied our dynamics:

def apply_expressive_marks (score) :

voice = score[’First Violin Voice’]

markuptools.Markup (r’\left-column { div. \line { con sord. } }’, Up) (voice[6][1]

markuptools.Markup (/' sim.’, Up) (voice[8][0])

markuptools.Markup (‘uniti’, Up) (voice[58]1[3])

markuptools.Markup ('div.’, Up) (voice[59][0])
1

markuptools.Markup (‘uniti’, Up) (voice[63]1[3])
voice = score[’Second Violin Voice’]
markuptools.Markup ('div.’, Up) (voice[7][0])
markuptools.Markup (‘uniti’, Up) (voice[66][1])
markuptools.Markup ('div.’, Up) (voice[67][0])
markuptools.Markup (‘uniti’, Up) (voice[74][0])

voice = score[’Viola Voice’]
markuptools.Markup (' sole’, Up) (voice[8][0])

voice = score[’Cello Voice’]
markuptools.Markup ('div.’, Up) (voice[10][0])
markuptools.Markup (‘uniti’, Up) (voice[74]1[0])
markuptools.Markup (‘uniti’, Up) (voice[84]1[1])

markuptools.Markup (r’\italic { espr. }’, Down) (voice[86]1[0])

markuptools.Markup (r’\italic { molto espr. }’, Down) (voice[88][1]

voice = score[’Bass Voice’]

markuptools.Markup ('div.’, Up) (voice[14][0])

markuptools.Markup (r’\italic { espr. }’, Down) (voice[86][0])
componenttools.split_components_at_offsets(voice[88][:], [Duration(l, 1), Duration(l, 2)1])
markuptools.Markup (r’\italic { molto espr. }’, Down) (voice[88][1]

markuptools.Markup (‘uniti’, Up) (voice[99][1])

for voice in iterationtools.iterate_voices_in_expr (score[’Strings Staff Group’]):
markuptools.Markup (r’\italic { (non dim.) }’, Down) (voice[102][0])

We use the marktools.LilyPondCommandClass to create LilyPond system breaks, and attach them to measures in
the percussion part. After this, our score will break in the exact same places as the original:
def apply_page_breaks (score) :

bell_voice = score[’Bell Voice’]

measure_indices = [5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 72,
79, 86, 93, 100]
for measure_index in measure_indices:
marktools.LilyPondCommandMark (
"break’,

"after’
) (bell_voice[measure_index])

We’ll make the rehearsal marks the exact same way we made our line breaks:
def apply_rehearsal_marks (score) :

bell _voice = score[’Bell Voice’]

90 Chapter 8. Part: Cantus in Memory of Benjamin Britten

Abjad Documentation, Release 2.12

measure_indices
90, 96, 102]

- [6, 12, 18, 24, 30, 36,

for measure_index in measure_indices:
marktools.LilyPondCommandMark (
r’mark \default’,
"before’
) (bell_voice[measure_index])

And then we add our final bar lines. marktools.BarLine objects inherit from marktools.Mark, so you can probably

42, 48, 54, 60, 66, 72, 78, 84,

guess by now how we add them to the score... instantiate and attach:

def apply_final bar_lines (score):

for voice in iterationtools.iterate_voices_in_expr (score) :

marktools.BarLine(’ |.”) (voice[-1]

8.6 The LilyPond file

Finally, we create some functions to apply formatting directives to our Score object, then wrap it into a LilyPond-

File and apply some more formatting.

In our configure_score() functions, we use layouttools.make_spacing_vector() to create the correct Scheme con-
struct to tell LilyPond how to handle vertical space for its staves and staff groups. You should consult LilyPond’s

vertical spacing documentation for a complete explanation of what this Scheme code means:

>>> spacing_vector
>>> f (spacing_vector)
#’ ((basic-distance 0)

(minimum-distance 0)

def configure_score (score) :

spacing_vector =
score
score
score
score

.override.
.override.
.override.
.set.mark__

staff_symbol.thickness
formatter

In our configure_lilypond_file() function, we need to construct a ContextBlock definition in order to tell LilyPond

layouttools.make_spacing_vector (0,

layouttools.make_spacing_vector (0,
vertical_axis_group.staff_staff_ spacing
staff_grouper.staff_ staff_ spacing
0.
schemetools.Scheme (' format-mark-box—numbers’)

0, 8, 0)

(padding 8) (stretchability 0))

OI 8’

0)
spacing_vector
spacing_vector

5

to hide empty staves, and additionally to hide empty staves if they appear in the first system:

def configure_lilypond_file(lilypond_file):

lilypond_file.global_staff_size = 8

context_block

context_block.
context_block.
lilypond_file.

context_name

lilypond_file.
lilypond_file.
lilypond_file.
lilypond_file.
lilypond_file.
lilypond_file.
lilypond_file.

paper_block.
paper_block.
paper_block.
paper_block.
paper_block.
paper_block.
paper_block.

bottom_margin
top_margin
left_margin =
right_margin
paper_width
paper_height

lilypond_file.
lilypond_file.

header_block.composer
header_block.title

system_separator_markup

lilypondfiletools.ContextBlock ()

r’Staff \RemoveEmptyStaves’
override.vertical_ axis_group.remove_first
layout_block.context_blocks.

True
append (context_block)

lilypondfiletools.LilyPondDimension (0.
lilypondfiletools.LilyPondDimension (0.
lilypondfiletools.LilyPondDimension (
lilypondfiletools.LilyPondDimension (
lilypondfiletools.LilyPondDimension (

(

0.
0.
5.
lilypondfiletools.LilyPondDimension (7.

markuptools.Markup (" Arvo Part’)
markuptools.Markup (' Cantus in Memory of Benjamin Britten

Let’s run our original toplevel function to build the complete score:

>>> lilypond_file

make_part_lilypond_file ()

And here we show it:

5’
5/
75,
5/
25,
25,

"in’)

rin’)
"in’)

in’)
7in’)
"in’)

8.6. The LilyPond file

91

(1€

9

8

0
U

marktools.LilyPondCommandMark (' slashSeparator’)

) ")

Abjad Documentation, Release 2.12

>>> show(lilypond_file)

Cantus in Memory of Benjamin Britten (19500

daniz-1m
m-'nuﬁl_sti'ﬁm;i'Fm;iE.
bl

= *__ [- g;.
rr

div.
% — £ ta - % &
B
s
o "IH‘ o an
r
div.
- - - L8 =
r
Ld
"o E i
Camp. g I L0

P —
s 3

92 Chapter 8. Pért: Cantus in Memory of Benjamin Britten

Abjad Documentation, Release 2.12

T
; 1 :
= r= 1 = ae 1
P
?F*F’Fff! B .E.E%
f L = |n]
ni—-—""f . _—
—
EEE%
£ g & 8 =
w :
E Ef £ 2 5.
.!P = = = 13 Il | -1
o g | == #
i g |
B: B B

8.6. The LilyPond file 93

Abjad Documentation, Release 2.12

94 Chapter 8. Part: Cantus in Memory of Benjamin Britten

Part 111

System Overview

95

CHAPTER
NINE

LEAF, CONTAINER, SPANNER, MARK

At the heart of Abjad’s Symbolic Score-Control lies a powerful model that we call the Leaf Container Spanner
Mark, or LCSM, model of the musical score.

The LCSM model can be schematically visualized as a superposition of two complementary and completely
independent layers of structure: a tree that includes the Containers and the Leaves, and a layer of free floating

connectors or Spanners.
{ container 1 t|
spanner |

[container 2] { confainer 3 |

spanner 2

confainer &

container 4

spanngt 4

leaf 1 leaf 4

[leaf 2 leaf 3 I

There can be any number of Spanners, they may overlap, and they may connect to different levels of the tree
hierarchy. The spanner attach to the elements of the tree, so a tree structure must exist for spanners to be made
manifest.

9.1 Example 1

To understand the whys and hows of the LCSM model implemented in Abjad, it is probably easier to base the
discussion on concrete musical examples. Let’s begin with a simple and rather abstract musical fragment: a
measure with nested tuplets.

97

Abjad Documentation, Release 2.12

F=_— r—bH—

QJJJJJ.I_J_J_JJ:DJ |

What we see in this little fragment is a measure with 4/4 meter, 14 notes and four tuplet brackets prolating the
notes. The three bottom tuplets (with ratios 5:4, 3:2, 5:4) prolate all but the last note. The topmost tuplet prolates
all the notes in the measure and combines with the bottom three tuplets to doubly prolate all but the last note.
The topmost tuplet as thus prolates three tuplets, each of which in turn prolates a group of notes. We can think
of a tuplet as containing notes or other tuplets or both. Thus, in our example, the topmost tuplet contains three
tuplets and a half note. Each of the tuplets contained by the topmost tuplet in turn contains five, three, and five
notes respectively. If we add the measure, then we have a measure that contains a tuplet that contains tuplets that
contain notes. The structure of the measure with nested tuplets as we have just described it has two important
properties:

1. It is a hierarchical structure.

2. It follows exclusive membership, meaning that each element in the hierarchy (a note, a tuplet or a mea-
sure) has one and only one parent. In other words a single note is not contained in more than one tuplet
simultaneously, and no one tuplet is contained in more than one other tuplet at the same time.

What we are describing here is a tree, and it is the structure of Abjad containers.

While this tree structure seem like the right way to represent the relationships between the elements of a score, it
is not enough. Consider the tuplet example again with the following beaming alternatives:

Beaming alternative 1:

L] '? 1
: §— —— —

eJJJJJJ_J_J_.D:DJ |

Beaming alternative 2:

L] '? 1
I § o p— —

QJJJJJJ_J_J_.D:DJ |

Beaming alternative 3:

f 3 1
r 3= —5—

T T A |

Clearly the beaming of notes can be totally independent from the tuplet groupings. Beaming across tuplet groups
implies beaming across nodes in the tree structure, which means that the beams do not adhere to the exclusive
(parenthood) membership characteristic of the tree. Beams must then be modeled independently as a separate and
complementary structure. These are the Abjad spanners.

Below we have the score of our tuplet example with alternative beaming and its the Leaf-Container-Spanner graph.
Notice that the colored blocks represent spanners.

Beaming alternative 3 (graph):

98 Chapter 9. Leaf, Container, Spanner, Mark

Abjad Documentation, Release 2.12

Measure

RN
—

Tuplet [3:2]

[

Tuplet [5:4] Tuplet [3:2]
1
3
4:5
1 1 1 1 1 1 1 1
15 15 15 15 15 18 18 18
Beam Spanner 1 Beam Spanner 2 Beam Spanner 3

9.2 Example 2

As a second example let’s look at the last five measures of Barték’s Wandering from Mikrokosmos vol. III. As
simple as it may seem, these five measures carry with them a lot of information pertaining to musical notation.

fi ritard._ _ _ _ _ _ _ _ _ _ _
S W i W 5 —" i P E—— p— 2 2 I
e, A e d A, L

rp mp —_—

1
g
%

|

Note: Please refer to the Bartok example for a step by step construction of the musical fragment and its full Abjad
code.

There are many musical signs of different types on the pages: notes, dynamic markings, clefs, staves, slurs, etc.
These signs are structurally related to each other in different ways. Let’s start by looking at the larger picture. The
piano piece is written in two staves. As is customary, the staves are graphically grouped with a large curly brace
attaching to them at the beginning or each system. Notice that each staff has a variety of signs associated with it.
There are notes printed on the staff lines as well as meter indications and bar lines. Each note, for example, is in
one and only one staff. A note is never in two staves at the same time. This is also true for measures. A measure
in the top staff is not simultaneously drawn on the top staff and the bottom staff. It is better to think of each staff
as having its own set of measures. Notice also that the notes in each staff fall within the region of one and only
one measure, i.e. measures seem to contain notes. There is not one note that is at once in two measures (this is
standard practice in musical notation, but it need not always be the case.)

As we continue describing the relationships between the musical signs in the page, we begin to discover a certain
structure, or a convenient way of structuring the score for conceptualization and manipulation. All the music in a
piano score seems to be written in what we might call a staff group. The staff group is composed of two staves.
Each staff in turn appears to be composed of a series or measures, and each measure is composed of a series of
notes. So again we find that the score structure can be organized hierarchically as a tree. This tree structure looks
like this:

9.2. Example 2 99

Abjad Documentation, Release 2.12

Beaim spanier

lMeasurel},mJ Measiire (2/4) l Measme[}.f-i]] l Measme[}.f-i]]

[Measure {2/4)]

Text sparimer

JR—

MWWN:IEMJJ [Maasure I3."-1-Il] [Measuwiz-fd]] [fdeasura IZ-'-‘?] [Measura [2|'4I]

Beam spannar Beam spanmner

Notice again though that there are elements in the score that imply and require a different kind of grouping. The
two four eighth-note runs in the lower staff are beamed together across the bar line and, based on our tree structure,
across tree nodes. So do the slurs, the dynamics markings and the ritardando indication at the top of the score.
As we have seen in the tuplets example, all these groups running across the tree structure can be defined with
spanners.

100 Chapter 9. Leaf, Container, Spanner, Mark

CHAPTER
TEN

PARSING

Abjad provides a growing number of language parsers. The most important of these is a sophisticate LilyPond

parser.

10.1 LilyPond Parsing

lilypondparsertools.LilyPondParser parses alarge, although incomplete, subset of LilyPond’s syn-

tax:

>>> parser = lilypondparsertools.LilyPondParser ()

The LilyPond parser understands notes, chords, skips and rests, including default durations and the g chord-repeat

construct:

>>> string = r"{ c’\longa r4. <d’ fs’ bff’> g g8 sl c’’\breve.

>>> result = parser (string)

>>> f (result)

{

c’\longa

r4.

<d’ fs’ bff’>4.
g4d.

<d’ fs’ bff’>8
sl

c’"\breve.

>>> show (result)

P

f | i,

7 4 - -

p - s ' .|
st A'u.wg' uw'; =
) 1 : 1

L) ot T o

The LilyPond parser understands most spanners, articulations and dynamics too:

>>> string = r’’’\new Staff {
c’8 \f \> (
da’ - [
e’ ">
£7 \ppp \<
g’ \startTrillSpan \ (
a” \)
b’] \stopTrillSpan
c’’) \accent \sfz
}
>>> result = parser (string)

101

Abjad Documentation, Release 2.12

>>> f (result)
\new Staff {
c’8 \f \> (
d’8 —\portato [
e’8 "~\accent
£78 \ppp \<
g’8 \(\startTrillSpan
a’8 \)
b’8] \stopTrillSpan
c’’8 —\accent \sfz)

f=oPP — 3f=

The LilyPond parser understands contexts and markup:

>>> string = r’’’\new Score <<
\new Staff = "Treble Staff" {
\new Voice = "Treble Voice" {
c’ "\markup { \bold Treble! }

}
}
\new Staff = "Bass Staff" {
\new Voice = "Bass Voice" {
\clef bass
c, _\markup { \italic Bass! }

>>

rror

>>> result = parser (string)

>>> f (result)
\new Score <<
\context Staff = "Treble Staff" {
\context Voice = "Treble Voice" {
c’4
A \markup {
\bold
Treble!

}
}
\context Staff = "Bass Staff" {
\context Voice = "Bass Voice" {
\clef "bass"
c,4
_ \markup {
\italic
Bass!

>>

>>> show (result)

102 Chapter 10. Parsing

Abjad Documentation, Release 2.12

Bass!

The LilyPond parser even understands certain aspects of LilyPond file layouts, like header blocks:

>>> string = r’’’
\header ({
name "Foo von Bar"
composer = \markup { by \bold \name }
title = \markup { The ballad of \name }
tagline = \markup { "" }

}
\score {
\new Staff ({
\time 3/4
g’ (b" d'’")
e’’4. (c''8 c'4)

}

rror

>>> result = parser (string)

>>> f (result)
Abjad revision 9810:9813
% 2013-03-24 23:45

o

\version "2.16.1"
\language "english"
\include "/home/josiah/Documents/Development/abjad/trunk/abjad/cfg/abjad.scm"

\header {
composer = \markup {
by
\bold
"Foo von Bar"
}
name = #"Foo von Bar"
tagline = \markup { }
title = \markup {
The
ballad
of
"Foo von Bar"
}
}

\score {

\new Staff {
\time 3/4
g4
b’ 4
d’’ 4)
e’"4. (
c’’8
c’4d)

>>> show (result)

10.1. LilyPond Parsing 103

Abjad Documentation, Release 2.12

The ballad of Foo von Bar

by Foo von Bar

4] T —

¥ ¥ | - O] =,

Fa [|

| | | I 1 1
el - I I L |
[J) r L

A small number of music functions are also supported, such as \relative. Music functions which mutate
the score during compilation, result in a normalized Abjad score structure. That is, the resulting Abjad structure
corresponds to the music as it appears on the page:

>>> string = r’’’\new Staff \relative ¢ { c32 de fgabcdefgabcdefgabcl}'’
>>> result = parser (string)

>>> f (result)
\new Staff {

c32
d32
e32
£32
g32
a32
b32
c’32
d’ 32
e’ 32
£732
g’ 32
a’32
b’ 32
c’’32
d’’32
e’’32
£fr732
gll32
a’’32
b’’32
c’’’32

>>> show (result)

B
h{ _
{

b —t

b —t

sl
ol

ol
%

10.2 RhythmTree Parsing

rhythmtreetools.RhythmTreeParser parses a microlanguage resembling Ircam’s RTM-style LISP syn-
tax, and generates a sequence of RhythmTree structures, which can be furthered manipulated by composers, before
being converted into Abjad score object:

>>> parser = rhythmtreetools.RhythmTreeParser ()
>>> string = (1 (1 (2 (1 1 1)) 2))’
>>> result = parser (string)
>>> result[0]
RhythmTreeContainer (
children=(
RhythmTreeLeaf (

preprolated_duration=Duration(l, 1),
is_pitched=True
) 4

RhythmTreeContainer (

104 Chapter 10. Parsing

Abjad Documentation, Release 2.12

children=(

RhythmTreeLeaf (
preprolated_duration=Duration (1,
is_pitched=True
) s

RhythmTreeLeaf (
preprolated_duration=Duration (1,
is_pitched=True
)

RhythmTreeLeaf (
preprolated_duration=Duration (1,
is_pitched=True
)

)

preprolated_duration=Duration (2, 1)
),

RhythmTreeLeaf (
preprolated_duration=Duration (2,
is_pitched=True

)

l)l

)y
preprolated_duration=Duration (1, 1)
)

>>> tuplet =
>>> f (tuplet)
\times 4/5 {
c’16
\times 2/3 {
c’le6
c’l6
c’l6

result[0] ((1, 4))[0]

>>> staff = stafftools.RhythmicStaff ([tuplet])

>>> show(staff, docs=True)

————
Fide

P v B

10.3 “Reduced-Ly” Parsing

1),

1),

1),

lilypondparsertools.ReducedLyParser parses the “reduced-ly” microlanguage, whose syntax com-
bines a very small subset of LilyPond syntax, along with affordances for generating various types of Abjad con-
tainers, and speedups for rapidly notating notes and rests without needing to specify pitches. It used mainly for

creating Abjad documentation:

>>> parser = lilypondparsertools.ReducedLyParser ()

>>> string = "| 4/4 ¢’ d’ e’ £/ ||
>>> result = parser (string)

3/8 r8 g’4 |"

>>> f (result)

{

\time 4/4
c’4
d’r4
e’ 4
fr4

\time 3/8

10.3. “Reduced-Ly” Parsing

105

Abjad Documentation, Release 2.12

r8
g'4

}

>>> show (result)

- —-—

106

Chapter 10. Parsing

Part IV

Tutorials

107

CHAPTER
ELEVEN

GETTING STARTED

Abjad makes powerful programming techniques available to you when you compose. Read through the points
below and then click next to proceed.

11.1 Knowing your operating system

Before you start working with Abjad you should review the command line basics of your operating system. You
should know how move around the filesystem, how to list the contents of directories and how to copy files. You
should know enough about environment variables to make sure that your operating system knows where Abjad
is installed. You might also consider installing any OS updates on your computer, too, since you’ll need Python
2.7 to run Abjad. When you start building score with Abjad you’ll find the system to be almost entirely platform-
independent.

11.2 Chosing a text editor

You’ll edit many text files when you work with Abjad. So you’ll want to spend some time picking out a text
editor before you begin. If this is your first time programming you might want to Google and read what other
programmers have to say on the matter. Or you could ask a programmer friend about the editor she prefers. Linux
programmers sometimes like vi or emacs. Macintosh programmers might prefer TextMate. Whatever your
choice make sure you set your editor is set to produce plain text files before you start.

11.3 Launching the terminal

To work with Abjad you’ll need a terminal window. The way that you open the terminal window depends on your
computer. If you’re using MacOS X you can navigate from Applications to Utilities and then click on
Terminal. Linux and Windows house the terminal elsewhere. Regardless of the terminal client you chose the
purpose of the terminal is to let you type commands to your computer’s operating system.

11.4 Where to save your work

Where you choose to save the files you create with Abjad is up to you. Eventually you’ll want to create a dedicated
set of directories to organize your work. But for now you can create the files described in the tutorials on your
desktop, in your documents folder or anywhere else you like.

109

Abjad Documentation, Release 2.12

110 Chapter 11. Getting started

CHAPTER
TWELVE

LILYPOND “HELLO, WORLD!”

Working with Abjad means working with LilyPond.
To start we’ll need to make sure LilyPond is installed.
Open the terminal and type 1ilypond —--version:

$ lilypond —--version
GNU LilyPond 2.17.3

Copyright (c) 1996--2012 by
Han-Wen Nienhuys <hanwen@xs4all.nl>
Jan Nieuwenhuizen <janneke@gnu.org>
and others.

This program is free software. It is covered by the GNU General Public
License and you are welcome to change it and/or distribute copies of it
under certain conditions. Invoke as " lilypond —--warranty' for more
information.

LilyPond responds with version and copyright information. If the terminal tells you that LilyPond is not found
then either LilyPond isn’t installed on your computer or else your computer doesn’t know where LilyPond is
installed.

If you haven’t installed LilyPond go to www . 1ilypond.org and download the current version of LilyPond for
your operating system.

If your computer doesn’t know where LilyPond is installed then you’ll have to tell your computer where LilyPond
is. Doing this depends on your operating system. If you’re running MacOS X or Linux then you need to make
sure that the location of the LilyPond binary is present in your PATH environment variable. If you don’t know
how to add things to your path you should Google or ask a friend.

12.1 Writing the file

Change to whatever directory you’d like and then use your text editor to create a new file called
hello_world.ly.

Type the following lines of LilyPond input into hello_world.ly:

\version "2.17.3"
\language "english"

\score {

c'4

}

Save hello_world. ly and quit your text editor when you’re done.

Note the following:

111

Abjad Documentation, Release 2.12

You can use either spaces or tabs while you type.

The version string you type must match the LilyPond version you found above.
The English language command tells LilyPond to use English note names.

The score block tells LilyPond that you're entering actual music.

The expression c'4 tells LilyPond to create a quarter note middle C.
LilyPond files end in .ly by convention.

o U W N

12.2 Interpreting the file

Call LilyPond on hello_world. ly:

$ lilypond hello_world.ly

GNU LilyPond 2.17.3

Processing " hello_world.ly'
Parsing...

Interpreting music...

Preprocessing graphical objects...
Finding the ideal number of pages...
Fitting music on 1 page...

Drawing systems...

Layout output to "hello_world.ps'...
Converting to " ./hello_world.pdf'...
Success: compilation successfully completed

LilyPond reads hello_world. ly as input and creates hello_world.pdf as output.
Open the hello_world.pdf file LilyPond creates.

You can do this by clicking on the file. Or you can open the file from the command line.
If you’re using MacOS X you can open hello_world.pdf like this:

$ open hello_world.pdf

Your operating system shows the score you created.

12.3 Repeating the process

Working with LilyPond means doing these things:

1. edit a LilyPond input file
2. interpet the input file
3. open the PDF and inspect your work

You’ll repeat this process many times to make your scores look the way you want. But no matter how complex
your music this edit-interpret-view loop will be the basic way you work.

112 Chapter 12. LilyPond “hello, world!”

CHAPTER
THIRTEEN

PYTHON “HELLO, WORLD!” (AT THE
INTERPRETER)

Working with Abjad means programming in Python. Let’s start with Python’s interactive interpreter.

13.1 Starting the interpreter

Open the terminal and type python to start the interpreter:

$ python

Python responds with version information and a prompt:

Python 2.7.3 (v2.7.3:70274d53cldd, Apr 9 2012, 20:52:43)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

The purpose of the interpreter is to let you try out code one line at a time.

13.2 Entering commands

Type the following at the interpreter’s prompt:

>>> print ’'hello, world!’
hello, world!

Python responds by printing hello, world! to the terminal.

13.3 Stopping the interpreter

Type quit (). Or type the two-key combination ct r1+D:

>>> quit ()

The interpreter stops and returns you to the terminal.
The Python interpreter is a good way to do relatively small things quickly.
But as your projects become more complex you will want to organize the code you write in files.

This is the topic of the next tutorial.

113

Abjad Documentation, Release 2.12

114 Chapter 13. Python “hello, world!” (at the interpreter)

CHAPTER
FOURTEEN

PYTHON “HELLO, WORLD!” (IN A
FILE)

This tutorial recaps the Python “hello, world!” of the previous the tutorial. The difference is that here you’ll save
the code you write to disk.

14.1 Writing the file

Change to whatever directory you’d like and then use your text editor to create a new file called
hello_world.py.

Type the following line of Python code into hello_world.py:

print ’'hello, world!’

Save hello_world.py when you're done.

14.2 Interpreting the file

Open the terminal and call Python on hello_world.py:

$ python hello_world.py
hello, world!

Python reads hello_world.py as input and outputs hello, world! to the terminal.

14.3 Repeating the process

Working with Python files means doing these things:

1. write a file
2. interpret the file
3. repeat 1 - 2

Experience will make this edit-interpret loop familiar. And no matter how complicated the projects you develop
this way of working with Python files will stay the same.

115

Abjad Documentation, Release 2.12

116 Chapter 14. Python “hello, world!” (in a file)

CHAPTER
FIFTEEN

MORE ABOUT PYTHON

The tutorials earlier in this section showed basic ways to work with Python. In this tutorial we’ll use the interactive
interpreter to find out more about the language and library of tools that it contains.

15.1 Doing many things

You can use the Python interpreter to do many things.
Simple math like addition looks like this:

>>> 2 + 2
4

Exponentiation looks like this:

>>> 2 xx 38
274877906944

Interacting with the Python interpreter means typing something as input that Python then evaluates and prints as
output.

As you learn more about Abjad you’ll work more with Python files than with the Python interpreter. But the
Python interpreter’s input-output loop makes it easy to see what Python is all about.

15.2 Looking around

Use dir () to see the things the Python interpreter knows about:

>>> dir ()

[/__builtins_ ', Y u

— 7

name__ ', ’'__package_ ']

These four things are the only elements that Python loads into the so-called global namespace when you start the
interpreter.
Now let’s define the variable x:

>>> x = 10

Which lets us do things with x:

>>> X xk 2
100

When we call dir () now we see that the global namespace has changed:

>>> dir ()
["__builtins__ ", ' doc__ ", '"_name__', ’'__package__ ', '"x']

117

Abjad Documentation, Release 2.12

Using dir () is a good way to check the variables Python knows about when it runs.
Now type __builtins___ at the prompt:

>>> _ builtins__
<module ’_ builtin_ ' (built-in)>

Python responds and tells us that __builtins___ is the name of a module.
A module is file full of Python code that somebody has written to provide new functionality.
Use dir () toinspect the contents of __builtins__ :

>>> dir(__builtins_)

[/ArithmeticError’, ’AssertionError’, ’AttributeError’, ’BaseException’, ’BufferError’, ’'BytesWarning’,
"DeprecationWarning’, ’'EOFError’, ’'Ellipsis’, ’EnvironmentError’, ’Exception’, ’'False’, ’FloatingPointError’,
"FutureWarning’, ’GeneratorExit’, ’IOError’, ’ImportError’, ’'ImportWarning’, ’IndentationError’,
"IndexError’, ’'KeyError’, ’'KeyboardInterrupt’, ’LookupError’, ’'MemoryError’, ’NameError’, ’'None’,
"NotImplemented’, ’NotImplementedError’, ’OSError’, ’OverflowError’, ’PendingDeprecationWarning’,
"ReferenceError’, ’'RuntimeError’, ’RuntimeWarning’, ’StandardError’, ’StopIteration’, ’SyntaxError’,
"SyntaxWarning’, ’SystemError’, ’SystemExit’, ’TabError’, ’True’, ’'TypeError’, ’'UnboundLocalError’,
"UnicodeDecodeError’, ’UnicodeEncodeError’, ’'UnicodeError’, ’'UnicodeTranslateError’, ’'UnicodeWarning’,
"UserWarning’, ’ValueError’, ’Warning’, ’ZeroDivisionError’, ’'_’, ’'__debug_ ', ’'__doc_ ', '__import_ ',

' _name__ ', '__package__', "abs’, ’"all’, ’any’ "apply’, ’'basestring’, ’bin’, ’"bool’, ’'buffer’,

"bytearray’, ’'bytes’, ’callable’, ’chr’, ’classmethod’, ’'cmp’, ’'coerce’, ’'compile’, ’'complex’, ’copyright’,
"credits’, ’delattr’, ’dict’, ’dir’, ’'divmod’, ’enumerate’, ’'eval’, ’'execfile’, ’'exit’, ’file’, 'filter’,
"float’, ’'format’, ’'frozenset’, ’'getattr’, ’‘globals’, ’'hasattr’, ’"hash’, ’'help’, ’'hex’, ’id’, ’input’, ’'int’,
"intern’, ’isinstance’, ’issubclass’, ’iter’, ’len’, ’license’, ’list’, ’'locals’, ’long’, ’'map’, ’'max’,
"memoryview’, ’'min’, ’‘next’, ’object’, ’‘oct’, ’open’, 'ord’, ’'pow’, ’'print’, ’property’, ’‘quit’, ’'range’,
"raw_input’, ’‘reduce’, 'relocad’, ’'repr’, ’'reversed’, ’'round’, ’'set’, ’setattr’, ’'slice’, ’sorted’,
"staticmethod’, ’str’, ’sum’, ’‘super’, ’tuple’, ‘type’, ’‘unichr’, ’‘unicode’, ’'vars’, ’'xrange’, ’'zip’]

Python responds with a list of many names.

Use Python’s len () command together with the last-output character _ to find out how many names
__builtins__ contains:

>>> len(_)
144

These names make up the core of the Python programming language.
As you learn Abjad you’ll use some Python built-ins all the time and others less often.

Before moving on, notice that both dir () and len () appear in the list above. This explains why we’ve been
able to use these commands in this tutorial.

118 Chapter 15. More about Python

CHAPTER
SIXTEEN

ABJAD “HELLO, WORLD” (AT THE
INTERPRETER)

16.1 Starting the interpreter

Open the terminal and start the Python interpreter:

abjad$ python

Python 2.7.3 (v2.7.3:70274d53cldd, Apr 9 2012, 20:52:43)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

Then import Abjad:

>>> from abjad import x

If Abjad is installed on your system then Python will silently load Abjad. If Abjad isn’t installed on your system
then Python will raise an import error.

Go to www.projectabjad.org and follow the instructions there to install Abjad if necessary.

16.2 Entering commands

After you’ve imported Abjad you can create a note like this:

>>> note = Note("c’4")

And you can show the note like this:

>>> show (note)

16.3 Stopping the interpreter

Type quit () or ctr1+D when you’re done:

>>> ~D

Working with the interpreter is a good way to test out small bits of code in Abjad. As your scores become more
complex you will want to organize the code your write with Abjad in files. This is the topic of the next tutorial.

119

Abjad Documentation, Release 2.12

120 Chapter 16. Abjad “hello, world” (at the interpreter)

CHAPTER
SEVENTEEN

ABJAD “HELLO, WORLD!” (IN A FILE)

17.1 Writing the file

Open the terminal and change to whatever directory you’d like.

Use your text editor to create a new file called hello_world.py. If you have hello_world.py left over
from earlier you should delete it and create a new file.

Type the following lines of code into hello_world.py:

from abjad import =«

note = Note("c’4")
show (note)

Save hello_world.py and quit your text editor.

17.2 Interpreting the file

Call Python on hello_world.py:

$ python hello_world.py

Python reads hello_world.py and shows the score you’ve created.

17.3 Repeating the process

Working with files in Abjad means that you do these things:

1. edit a file
2. interpret the file

These steps make up a type of edit-interpret loop.

This way of working with Abjad remains the same no matter how complex the scores you build.

121

Abjad Documentation, Release 2.12

122 Chapter 17. Abjad “hello, world!” (in a file)

CHAPTER
EIGHTEEN

MORE ABOUT ABJAD

18.1 How it works

How does Python suddenly know what musical notes are? And how to make musical score?

Use Python’s dir () built-in to get a sense of the answer:

>>> dir ()

["ABJCFG’, ’'Chord’, ’Container’, ’'Duration’, ’Fraction’, ’'Measure’, ’'Note’, ’'Rest’, ’Score’, ’'Staff’,
"Tuplet’, ’'Voice’, ’'__builtins_ ', ’'__doc_ ', '_name_ ', ’'__package__ ', ’'__warningregistry_ ', ’"abctools’,
"abjadbooktools’, ’beamtools’, ’'chordtools’, ’componenttools’, ’configurationtools’, ’containertools’,
"contexttools’, ’datastructuretools’, ’'decoratortools’, ’'developerscripttools’, ’documentationtools’,
"durationtools’, ’exceptiontools’, ’f’, ’formattools’, ’‘gracetools’, ’importtools’, ’instrumenttools’,
"introspectiontools’, ’iotools’, ’iterationtools’, ’labeltools’, ’layouttools’, ’leaftools’,
"lilypondfiletools’, ’lilypondparsertools’, ’lilypondproxytools’, ’'marktools’, ’'markuptools’, ’mathtools’,
"measuretools’, ’notetools’, ’'offsettools’, ’'p’, ’'pitcharraytools’, ’'pitchtools’, ’'play’, ’'resttools’,
"rhythmtreetools’, ’schemetools’, ’scoretemplatetools’, ’scoretools’, ’sequencetools’, ’show’, ’'sievetools’,
"skiptools’, ’spannertools’, ’stafftools’, ’stringtools’, ’tempotools’, ’'tietools’, ’'timeintervaltools’,
"timesignaturetools’, ’rhythmmakertools’, ’tonalitytools’, ’tuplettools’, ’verticalitytools’, ’voicetools’,
"wellformednesstools’, ’'z’]

Calling from abjad import = causes Python to load hundreds or thousands of lines of Abjad’s code into
the global namespace for you to use. Abjad’s code is organized into a collection of several dozen different score-
related packages. These packages comprise hundreds of classes that model things like notes and rests and more
than a thousand functions that let you do things like transpose music or change the way beams look in your score.

18.2 Inspecting output

Use dir () to take a look at the contents of the iotools package:

>>> dir (iotools)

[/__builtins_ ', ’'__doc_ ', '__file ', '__name__ ', ’'__package_ ', ’'__path_ ', ’_documentation_section’,
"clear_terminal’, "f’, ’"get_last_output_file_name’, ’get_next_output_file_name’, ’importtools’, ’'log’, ’'ly’,
"p’, 'pdf’, ’'play’, ’'profile_expr’, ’'redo’, ’'save_last_ly_as’, ’'save_last_pdf_as’, ’show’,

" spawn_subprocess’, ’'write_expr_to_ly’, ’'write_expr_to_pdf’, ’z’]

The iotools package implements I/O functions that help you work with the files you create in Abjad.
Use iotools.ly () to see the last LilyPond input file created in Abjad:

% Abjad revision 7636
% 2012-10-09 13:32

\version "2.17.3"
\language "english"
\include "/Users/trevorbaca/Documents/abjad/trunk/abjad/cfg/abjad.scm"

\header {
tagline = \markup { }

123

Abjad Documentation, Release 2.12

\score {
c'4
}
Notice:
1. Abjad inserts two lines of %-prefixed comments at the top of the LilyPond files it creates.
2. Abjad includes version and language commands automatically.
3. Abjad includes a special abjad.scm file resident somewhere on your computer.
4. Abjad includes dummy LilyPond header.
5. Abjad includes a one-note score expression similar to the one you created in the last tutorial

When you called show (note) Abjad created the LilyPond input file shown above. Abjad then called LilyPond
on that . 1y file to create a PDF.

(Quit your text editor in the usual way to return to the Python interpreter.)
Now use 1otools.log () to see the output LilyPond created as it ran:

GNU LilyPond 2.17.3

Processing ~7721.1ly'

Parsing...

Interpreting music...

Preprocessing graphical objects...
Finding the ideal number of pages...
Fitting music on 1 page...

Drawing systems...

Layout output to “~7721.ps'...
Converting to ~./7721.pdf'...
Success: compilation successfully completed

This will look familiar from the previous tutorial where we created a LilyPond file by hand.

(Quit your text editor in the usual way to return to the Python interpreter.)

124 Chapter 18. More about Abjad

CHAPTER
NINETEEN

CHANGING NOTES TO RESTS

19.1 A series of notes

It is easy to make a repeating pattern of notes.

>>> staff = Staff()
>>> staff.extend([Note(i, (1,8)) for i in [0, 2, 4, 9, 7] x 4 1)
>>> show (staff)

(3] dji l---*'| uf' ui '_'lﬁ:

In the above example, a single list comprehension takes care of creating our notes.

19.2 Notes belonging to a staff can be iterated

We will create our repeated pattern again. Note that you can do this in one line:
>>> staff = Staff([Note(i, (1,8)) for i in [0, 2, 4, 9, 7] * 4 1)
Now, iterate over the staff’s contents, substituting an eighth rest for every fifth (count from zero!) Note element in
the staff:
>>> for i, note in enumerate (staff):
if (1%5) ==

staff[i] = Rest ((1,8))

>>> show (staff)

(4] _ L
%m e
G TR e

19.3 Notes can be used directly

In the previous example, we used an index (i) to keep track of where we are in the list of notes, and based our
decision to flip on that index. We can also decide to flip a note to a rest based on the note iteself:

>>> staff = Staff ([Note(i, (1,8)) for i in [0, 2, 4, 9, 71 * 4 1])
>>> for i, note in enumerate (staff):
if note.sounding_pitch == "d’":
staff[i] = Rest ((1,8))

>>> show (staff)

125

Abjad Documentation, Release 2.12

@-&'755—# o
"" "’ -+ -

All the d’s are now rests.

ar
el

=tms

126 Chapter 19. Changing notes to rests

CHAPTER
TWENTY

CREATING REST-DELIMITED SLURS

Take a look at the slurs in the following example and notice that there is a pattern to how they arranged.

34— A | .
4 > r == — —
. " 1 i —
(2, - < ! ' — -‘I- -é-
—
— —— —

The pattern? Slurs in the example span groups of notes and chords separated by rests.

Abjad makes it easy to create rest-delimited slurs in a structured way.

20.1 Entering input

Let’s start with the note input like this:

>>> string = r"\times 2/3 { c’4 d’ r } r8 e’4 <fs’ a’ c’'’>8 ~ g4 \times 4/5 { rl6 g’ r b’ d’’
>>> staff = Staff (string)
>>> show (staff)

33— N |

o

@ | K 'Fl

()

(
i
111
:

-

20.2 Grouping notes and chords

Next we’ll group notes and chords together with one of the functions available in the componenttools pack-

age.

We add slur spanners inside our loop:

>>> leaves = iterationtools.iterate_leaves_in_expr (staff)
>>> for group in componenttools.yield_groups_of_mixed_klasses_in_sequence (leaves, (Note, Chord)):

SlurSpanner

SlurSpanner

spannertools.SlurSpanner (group)

d’ 4)

'16)

(c’4

SlurSpanner (e’ 4, <fs’ a’ c’'’>8, <fs’ a’ c’’>4)
(g9
(

SlurSpanner (b’16, d’’16, df’4, c’4, c’'l)

Here’s the result:

>>> show (staff)

} df’4 c’

127

~ c'1'

Abjad Documentation, Release 2.12

4] L— d— b, |

Il

\

L
i /1
i

o 4
A —
But there’s a problem.

Four slur spanners were generated but only three slurs are shown.

Why? Because LilyPond ignores one-note slurs.

20.3 Skipping one-note slurs

Let’s rewrite our example to prevent that from happening:

>>> staff = Staff (string)
>>> leaves = iterationtools.iterate_leaves_in_expr (staff)
>>> klasses = (Note, Chord)
>>> for group in componenttools.yield groups_of_mixed_klasses_in_sequence (leaves, klasses):
if 1 < len(group):
spannertools.SlurSpanner (group)

SlurSpanner (c’4, d’4)

SlurSpanner (e’ 4, <fs’ a’ c’’>8, <fs’' a’ c’'’>4)
SlurSpanner (b’16, d’’16, df’4, c’4, c'1l)

And here’s the corrected result:

>>> show (staff)

I
o
A

e ——

128 Chapter 20. Creating rest-delimited slurs

CHAPTER
TWENTYONE

MAKING GROB OVERRIDES

21.1 Grob-override component plug-ins

All Abjad containers have a grob-override plug-in:

>>> staff = Staff("c’4 d’'4 e’'4 £'4 g’4 a’4 g’'2")
>>> staff.override.staff_symbol.color = ’'blue’

>>> staff.override
LilyPondGrobOverrideComponentPlugIn (staff_ symbol_ _color=’'blue’)

All Abjad leaves have a grob-override plug-in, too:

>>> leaf = staff[-1]

>>> leaf.override.note_head.color = "red’
>>> leaf.override.stem.color = ’'red’

>>> leaf.override
LilyPondGrobOverrideComponentPlugIn (note_head__color="red’, stem__color='red’)

And so do Abjad spanners:
>>> slur = spannertools.SlurSpanner (staff[:])
>>> slur.override.slur.color = ’red’

>>> slur.override
LilyPondGrobOverrideComponentPlugIn (slur__color='red’)

21.2 Grob proxies

Grob-override plug-ins contain grob proxies:

>>> leaf.override.note_head
LilyPondGrobProxy (color = ’'red’)

>>> leaf.override.stem
LilyPondGrobProxy (color = ’'red’)

21.3 Dot-chained override syntax

The’s dot-chained grob override syntax shown here results from the special way that the Abjad grob-override
plug-in and grob proxy set and get their attributes.

129

Abjad Documentation, Release 2.12

130 Chapter 21. Making grob overrides

CHAPTER
TWENTYTWO

MAPPING LISTS TO RHYTHMS

Let’s say you have a list of numbers that you want to convert into rhythmic notation. This is very easy to do. There
are a number of related topics that are presented separately as other tutorials.

22.1 Simple example

First create a list of integer representing numerators. Then turn that list into a list of Durations instances:

>>> integers = [4, 2, 2, 4, 3, 1, 5]
>>> denominator = 8
>>> durations = [Duration (i, denominator) for i in integers]

Now we notate them using a single pitch with the function notetools.make_notes():

>>> notes = notetools.make_notes(["c’"], durations)
>>> staff = Staff (notes)
>>> show (staff)

f
__ﬂﬁ'i N . N 1 N r N 1
faw T 1 | | 1 I % | %
S B 1 1 | 1 |] | Ll
[= 4 4 S 4 4 =5 4
o S—

There we have it. Durations notated based on a simple list of numbers. Read the tutorials on splitting rhythms
based on beats or bars in order to notate more complex duration patterns. Also, consider how changing the
denominator in the Fraction above would change the series of durations.

=tms

131

Abjad Documentation, Release 2.12

132 Chapter 22. Mapping lists to rhythms

CHAPTER
TWENTYTHREE

UNDERSTANDING LILYPOND GROBS

LilyPond models music notation as a collection of graphic objects or grobs.

23.1 Grobs control typography

LilyPond grobs control the typographic details of the score:

>>> staff = Staff("c’4 (d’'4) e’'4 (£74) g'4 (a"4) g'2")

>>> f (staff)
\new Staff {
"4 (
)

14

’

c
d
e
£
g9
a
g

’

’

)

N BB D DD

’

}

>>> show (staff)

0 1

i } I 1 I 1
S T

In the example above LilyPond creates a grob for every printed glyph. This includes the clef and time signature as
well as the note heads, stems and slurs. If the example included beams, articulations or an explicit key signature
then LilyPond would create grobs for those as well.

23.2 Grobs can be overridden

You can change the appearance of LilyPond grobs with grob overrides:

>>> staff.override.staff_symbol.color = ’"blue’
>>> staff.override.note_head.color = ’red’
>>> staff.override.stem.color = ’red’

>>> f (staff)
\new Staff \with {

\override NoteHead #’color = #red
\override StaffSymbol #’color = #blue
\override Stem #’color = #red
PoA
c’4 (
d’4)
e’d (
fr4)

133

Abjad Documentation, Release 2.12

Q o Q
N

}

>>> show(staff, docs=True)

41
R ;
[t—._____.--""' a S —

L 108}
Ml
]
nL
ol |

23.3 Nested Grob properties can be overriden

In the above example, staff_symbol, note_head and stem correspond to the LilyPond grobs StaffSymbol, NoteHead
and Stem, while color in each case is the color properties of that graphic object.

It is not uncommon in LilyPond scores to see more complex overrides, consisting of a grob name and a list of two
or more property names:

\override StaffGrouper #'staff-staff-spacing #'basic-distance = #7

To achieve the Abjad equivalent, simply concatenate the property names with double-underscores:

>>> staff = Staff()
>>> staff.override.staff_grouper.staff_staff_ spacing__basic_distance = 7
>>> f (staff)
\new Staff \with {

\override StaffGrouper #’staff-staff-spacing #’basic-distance = #7
PoA
}

Abjad will explode the double-underscore delimited Python property into a LilyPond property list.

23.4 Check the LilyPond docs

New grobs are added to LilyPond from time to time.

For a complete list of LilyPond grobs see the LilyPond documentation.

134 Chapter 23. Understanding LilyPond grobs

http://lilypond.org/doc/v2.13/Documentation/internals/all-layout-objects

CHAPTER
TWENTYFOUR

UNDERSTANDING TIME SIGNATURE
MARKS

In this tutorial we take a deeper look at what happens when we attach time signature marks to staves and other
score components.

At the end of the tutorial you’ll understand how time signature marks are created.

You’ll also understand how the states of different objects change when time signature marks are attached and
detached.

24.1 Getting started

We start by creating a staff full of notes:

>>> staff = Staff("c’4 d’4 e’4 £'4 g’'2")

If we ask the Abjad interpreter about our staff reference Abjad will respond with the interpreter display of the
object:

>>> staff
Staff{5}

The 5in Staff {5} shows that the staff contains 5 top-level components. The curly braces in Staff {5} show
that the contents of the staff are to be read sequentially through time rather than in parallel.

Before we get to time signature marks let’s take a moment and examine the state of the staff we’ve created. We
can motivate this a bit by asking two questions:

1. what time signature is currently in effect for the staff we have just created?
2. what is the time signature currently in effect for the five notes contained within the staff we have just created?

The answer to both questions is the same: there is no time signature currently in effect for either our staff or for
the five notes it contains.

‘We can see that this is the case with tools from the API:

>>> contexttools.get_effective_time_signature(staff) is None
True

And:

>>> for leaf in staff:
contexttools.get_effective_time_signature (leaf) is None

True

True

True

True
True

135

Abjad Documentation, Release 2.12

And we can iterate both the staff and its leaves at one and the same time like this:

>>> for component in iterationtools.iterate_components_in_expr (staff) :
component, contexttools.get_effective_time_signature (component)

Staff{5}, None)

(

(Note ("c’4"), None)
(Note ("d’”4"), None)
(Note ("e’”4"), None)
(Note ("f’4"), None)
(Note ("g’2"), None)

This confirms the answer to our questions that there is not yet any time signature in effect for any component in
our staff because we have not yet attached a time signature mark to any component in our staff.

24.2 LilyPond’s implicit 4/4

So what happens if we format our staff and send it off to LilyPond to render as a PDF? Will LilyPond render the
staff with a time signature? Without a time signature? Will LilyPond refuse to render the example at all?

We find out like this:

>>> show (staff)

A —14 :
ERSE S

It turns out LilyPond defaults to a time signature of 4 /4.

What’s important to note here is that because we have not yet attached a time signature mark any component in
our staff Abjad says “no effective time signature here” while LilyPond says “OK, I'll default to 4/4 so we can
get on with rendering your music.”

We can further confirm that this is the case by asking Abjad for the LilyPond format of our staff:

>>> f (staff)
\new Staff {
c’4
d’4
e’ 4
fr4
g’'2
}

The LilyPond format of our staff contains no LilyPond \t ime command. This is, again, because we have not yet
attached a time signature mark to any component in our staff.

24.3 Using time signature marks

We can now practice attaching and detaching time signature marks to different components in our staff and study
what happens as we do.

We’ll start with 3/4.

The easiest thing to do is to attach a time signature mark to the staff itself.

We’ll do this in two separate steps and study each step to understand exactly what’s going on.
First, we create a 3/4 time signature mark:

>>> time_signature_mark = contexttools.TimeSignatureMark ((3, 4))

If we ask the Abjad interpreter for the interpreter dispaly of our time signature mark we get the following:

136 Chapter 24. Understanding time signature marks

Abjad Documentation, Release 2.12

>>> time_signature_mark
TimeSignatureMark ((3, 4))

All this tells us is that we have in fact created a 3/4 time signature mark. Nothing too exciting yet. At this point
our 3/4 time signature is not yet attached to anything. We could say that the “state” of our time signature mark is
“unattached.” And we can see this like so:

>>> time_signature_mark.start_component is None
True

What does it mean for a time signature mark to have ’ start_component’ equal to none? It means that the
time signature isn’t yet attached to any score component anywhere.

So now we attach our time signature mark to our staff:

>>> time_signature_mark.attach (staff)
TimeSignatureMark ((3, 4)) (Staff{5})

Abjad responds immediately by returning the time signature mark we have just attached.

Notice that our time signature mark’s repr has changed. The repr of our 3/4 time signature mark now includes
the repr of the staff to which we have just attached the time signature mark. That is to say that the repr of our time
signature mark is statal.

Our time signature mark has transitioned from an “unattached” state to an “attached” state. We can see this like
so:

>>> time_signature_mark.start_component
Staff{5}

And our staff has likewise transitioned from a state of having no effective time signature to a state of having an
effective time signature:

>>> contexttools.get_effective_time_signature (staff)
TimeSignatureMark ((3, 4)) (Staff{5})

And what about the leaves inside our staff? Do the leaves now “know” that they are governed by a 3/4 time
signature?
Indeed they do:

>>> for leaf in staff.leaves:
leaf, contexttools.get_effective_time_signature (leaf)

Note ("c’4"

(), TimeSignatureMark ((3, 4)) (Staff{5}))
(Note ("d"4"), TimeSignatureMark ((3, 4)) (Staff{5}))
(Note ("e’4"), TimeSignatureMark ((3, 4)) (Staff{5}))
(Note ("£74"), TimeSignatureMark ((3, 4)) (Staff{5}))
(Note ("g”2"), TimeSignatureMark ((3, 4)) (Staff{5}))

So to briefly resume:
What we just did was to:
1. create a time signature mark
2. attach the time signature to a score component
This 2-step pattern is always the same when dealing with context marks: create then attach.

(We will find out later that there are short-cuts for different parts of this process. Right now we’ve chosen to create
in a first step and attach in a second step so that we can examine the changing states of the objects involved.)

Before moving on let’s look at the PDF corresponding to our staff:
>>> show (staff)

D

LEEY I

A

24.3. Using time signature marks 137

Abjad Documentation, Release 2.12

And let’s confirm what we see in the PDF in the staff’s format:

>>> f (staff)
\new Staff {
\time 3/4
c’4
d’ 4
e’ 4
fr4
g’2
}

The staff’s format now contains a LilyPond \t ime command because we have attached an Abjad time signature
mark to the staff.

What we’ve just been through above will cover over 80% of what you’ll ever wind up doing with time signature
marks: creating them and attaching them directly to staves. But what if we wanna get rid of a time signature mark?
Or what if the time signature will be changing all over the place? We cover those cases next.

Detaching a time signature mark is easy:
>>> time_signature_mark.detach ()

TimeSignatureMark ((3, 4))

The Abjad returns the mark we have just detached. And, observing the repr of the time signature mark, we see
that the time signature mark has again changed state: the time signature mark has transitioned from attached to
unattached. We confirm this like so:

>>> time_signature_mark.start_component is None
True

And also like so:

>>> contexttools.get_effective_time_signature (staff) is None
True

Yup: our time signature mark knows nothing about our staff. And vice versa. This is good.
So now what if we want to set up a time signature of 2 /4? That fits our music, too.

We have a couple of options.

We can simply create and attach a new time signature mark:

>>> duple_time_signature_mark = contexttools.TimeSignatureMark ((2, 4))
>>> duple_time_signature_mark.attach (staff)
TimeSignatureMark ((2, 4)) (Staff{5})

>>> f (staff)
\new Staff {
\time 2/4
c’4
d’ 4
e’ 4
fr4
g’'2

>>> show (staff)

jE - 4
| i |

o e

Yup. That works.

Wil

On the other hand, we could simply reuse our previous 3/4 time signature mark.

To do this we’ll first detach our 2 /4 time signature mark ...

138 Chapter 24. Understanding time signature marks

Abjad Documentation, Release 2.12

>>> duple_time_signature_mark.detach ()
TimeSignatureMark ((2, 4))

... confirm that our staff is now time signatureless ...

>>> contexttools.get_effective_time_signature (staff) is None
True

>>> f (staff)
\new Staff {
4

4

’

N B DD

14

Q th 0 Q Q

... reattach our previous 3/4 time signature ...

>>> time_signature_mark.attach (staff)
TimeSignatureMark ((3, 4)) (Staff{5})

... change the numerator of our time signature mark ...

>>> time_signature_mark.numerator = 2

... and check to make sure that everything is as it should be:

>>> contexttools.get_effective_time_signature (staff)
TimeSignatureMark ((2, 4)) (Staff{5})

>>> time_signature_mark.start_component

Staff{5}

>>> f (staff)
\new Staff {
\time 2/4
c’4
d’ 4
e’ 4
fr4
g'2

>>> show (staff)

And everything works as it should.
To change to, for example, 4 /4 we change just change the time signature mark’s numerator again:

>>> time_signature_mark.numerator = 4

>>> f (staff)
\new Staff {
\time 4/4

24.4 First-measure pick-ups

But what if our time signature has a 2 /4 pick-up?

24.4. First-measure pick-ups 139

Abjad Documentation, Release 2.12

The LilyPond command for pick-ups is \partial. Abjad time signature marks implement this as a read / write
attribute:

>>> time_signature_mark.partial = Duration (2, 4)

>>> f (staff)
\new Staff {
\partial 2
\time 4/4
c’4
d’ 4
e’ 4
fr4
g’2

>>> show (staff)

4]

F i S—
(I,]

And what if time signature changes all over the place?

@il

We’ll use the trivial example of a measure in 4 /4 followed by a measure in 2/ 4.
To do this we will need two time signature marks.
We’ve already got a 4/4 time signature mark attached to our staff:

>>> f (staff)
\new Staff {
\partial 2
\time 4/4
c’4
d’ 4
e’ 4
fr4
g’'2
}

Let’s get rid of the pick-up:

>>> time_signature_mark.partial = None

>>> f (staff)
\new Staff {
\time 4/4
c’4
d’4
e’ 4
fr4
g’2
}

Now what about the 2 /4 time signature mark?
We create it in the usual way:

>>> duple_time_signature_mark = contexttools.TimeSignatureMark ((2, 4)
>>> duple_time_signature_mark
TimeSignatureMark ((2, 4))

But should we attach it? We can’t attach our 2/4 time signature to our staff because we’ve already attached
our 4/4 time signature to our staff. And it only makes sense to attach one time signature to any given score
component.

Observe that we’ve built our score in a very straightforward way: we have a single staff that contains a (flat)
sequence of notes. This means that we have only one choice for where to attach the new 2 /4 time signature mark.
And that is one the g’ 2 that comes on the downbeat of the second measure. We do that like this:

140 Chapter 24. Understanding time signature marks

Abjad Documentation, Release 2.12

>>> duple_time_signature_mark.attach (staff[4])
TimeSignatureMark ((2, 4)) (g’2)

>>> f (staff)
\new Staff {
\time 4/4
c’4
d’4
e’ 4
fr4
\time 2/4
g’2

>>> show (staff)

f)

o
Fal F i) 3 |

e

And everything works as we would like.

Hs
il

Incidentally, staff [4] means the component sitting at index 4 inside our staff. Using the interpreter we can
verify that this is g’ 2:

>>> staff[4]
Note("g’ 211)

Depending on how we had chosen to build our staff we would have had more options for where to attach our
2 /4 time signature mark. If, for example, we had chosen to populate our staff with a series of measures then it’s
possible we could have attached our 2 /4 time signature to a measure instead of a note.

24.5 Time signature API

That covers the vast majority of things you’ll do with time signature marks.

But before we stop we should mention another useful API function and then talk about some short-cuts.
First an API function to detach ALL context marks attaching to a component:

We call the function a first time:

>>> contexttools.detach_context_marks_attached_to_component (staff)
(TimeSignatureMark ((4, 4)),)

>>> f (staff)
\new Staff {
c’4
d’ 4
e’ 4
fr4
\time 2/4
g’2
}

And then a second time:

>>> contexttools.detach_context_marks_attached_to_component (staff[4]
(TimeSignatureMark ((2, 4)),)

>>> f (staff)
\new Staff {
c’4
d’ 4
e’ 4
fr4

24.5. Time signature API 141

Abjad Documentation, Release 2.12

9’2
}

Now there are now context marks of any sort attached to our staff or to the notes in our staff.

Be careful with this function, though: it removes all context marks. So even though we just used the function
to remove time signature marks, it also would have removed any clef marks or tempo marks if we had had those
attached to our score, too.

And now for the short-cuts:
Our staff currently has no time signature marks attached:

>>> f (staff)
\new Staff {

So to recreate our 3/4 time signature we can do this ...

>>> time_signature_mark = contexttools.TimeSignatureMark ((3, 4))

... and then use a short-cut to avoid calling time_signature_mark.attach () like this:

>>> time_signature_mark (staff)
TimeSignatureMark ((3, 4)) (Staff{5})

>>> f (staff)
\new Staff {
\time 3/4
c’4
d’4
e’ 4
fr4
g’2
}

What’s going on here is that all context marks implement the special __call__ () method as a short-cut for
attach (). What is the special __call__ () method? The _ _call__ () method is what makes a function,
class or any other Python object callable. The statement t ime_signature_mark (staff) has has parenthe-
ses in it because the time signature mark is callable; and the time signature mark is callable because all context
marks implement the special __call__ () method.

Note too that all context marks understand an empty call as a short-cut for detach (). Like this:

>>> time_signature_mark ()
TimeSignatureMark ((3, 4))

>>> f (staff)
\new Staff {
c'4
dr4a
e’ 4
fr4
g'2
}

The empty call made against the time signature mark causes the time signature mark to detach from its start
component.

The fact that context marks implement the special __call__ () method as a short-cut for attach() means that
context marks can be created and attached in a single line:

>>> contexttools.TimeSignatureMark ((2, 4)) (staff)
TimeSignatureMark ((2, 4)) (Staff{5})

142 Chapter 24. Understanding time signature marks

Abjad Documentation, Release 2.12

>>> f (staff)

\new Staff {
\time 2/4
c’4

’

d
e
£
g

N BB D

14

What’s going on here?

What’s going on is that contexttools.TimeSignatureMark ((2, 4)) creates a time signature mark in
the usual way and that — immediately after this — the newly created time signature mark is available for us to call
it against our staff.

This last short-cut form of ...

>>> contexttools.TimeSignatureMark ((2, 4)) (staff)

... is the usual way that you will see context marks of all sorts presented in the docs.

24.5. Time signature API 143

Abjad Documentation, Release 2.12

144 Chapter 24. Understanding time signature marks

CHAPTER
TWENTYFIVE

WORKING WITH COMPONENT
PARENTAGE

Many score objects contain other score objects.
>>> tuplet = Tuplet (Fraction(2, 3), "c’4 d’4 e’4")

>>> staff = Staff (2 » tuplet)
>>> score = Score([staff])

>>> show (score, docs=True)

r 32 T 3

L &

Qép!:

-

! |
- L J

-

| |
- L

Abjad uses the idea of parentage to model the way objects contain each other.

25.1 Improper parentage

The improper parentage of the first note in score begins with the note itself:

>>> note = score.leaves[0]

>>> note.parentage
Parentage (Note ("c’4"), Tuplet(2/3, [c'4, d'4, e’4]), Staff{2}, Score<<l>>)

>>> note.parentage|[:]
(Note ("c’4"), Tuplet(2/3, [c’4, d’4, e'4]), Staff{2}, Score<<l>>)

25.2 Proper parentage

The proper parentage of the note begins with only the immediate parent of the note:

>>> note.parentage[l:]
(Tuplet (2/3, [c'"4, d’'4, e’4]), Staff{2}, Score<<l>>)

Note: the length of the improper parentage of any component equals the length of the proper parentage of the
component plus 1.

25.3 Parentage attributes

Use Parentage to find score depth:

145

Abjad Documentation, Release 2.12

>>> note.parentage.depth
3

Or score root:

>>> note.parentage.root
Score<<1>>

Or to find whether a component has no (proper) parentage at all:

>>> note.parentage.is_orphan
False

146 Chapter 25. Working with component parentage

CHAPTER
TWENTYSIX

WORKING WITH THREADS

26.1 What is a thread?

A thread is a structural relationship binding a set of strictly sequential voice-level components.
Threads may be explicitly defined via voice instances:

>>> v = Voice ()

Or they may exist implicitly in certain score constructs in the absence of voice containers:

>>> staff = Staff("c’8 d’8 e’8 £78")

Two contiguous voices must have the same name in order to be part of the same thread.

Here a thread does not exist between notes in different voices:

>>> v_one = Voice("c’1l6 d’16 e’l6c f’16"
>>> v_two = Voice("c’8 d’8"
>>> staff = Staff([v_one, v_two])

>>> f (staff)
\new Staff {
\new Voice {
c’l6
d’1l6
e’le6
fr16
}
\new Voice {
c’8
d’s

Here a thread does exist:

>>> v_one.name = ’flute’
>>> v_two.name = ’flute’
>>> f (staff)
\new Staff {
\context Voice = "flute" {
c’l6
d’1le
e’l6
£716
}
\context Voice = "flute" {
c’8
d’s

147

Abjad Documentation, Release 2.12

26.2 What are threads for?

Consider the following situation:
o) " —— — |
— E— ’ d L4 @
| |
|

[|

Are the two eighth notes in the second half of the measure the continuation of the ascending line in the first half,
or is it the quarter note? Is the very last C the continuation of the top melodic line or is it the A? The stems might
suggest an answer, but for Abjad, stem direction is not structural. What path should Abjad take to traverse this
little score from the first note to the last A? This same problem appears when trying to apply spanners to parallel
structures. Thus, threads are important in both score navigation and the application of spanners. In fact, threads
are a requirement for spanner application.

In Abjad, the ambiguity is resolved through the explicit use of named voices.
The musical fragment above is constructed with the following code:

>>> vA = Voice (notetools.make_notes([5, 7, 9, 111, [(1, 8)]1 = 4))

>>> vB = Voice (notetools.make_notes([12, 11, 91, [(1, 8), (1, 8), (1, 4)1))
>>> vC = Voice (Note (12, (1, 4)) * 2)

>>> mark = marktools.LilyPondCommandMark (' voiceOne’) (vA[0])

>>> mark = marktools.LilyPondCommandMark (' voiceOne’) (vB[0])

>>> mark = marktools.LilyPondCommandMark (’voiceTwo’) (vC[0]

>>> p = Container ([vB, vC])

>>> p.is_parallel = True

>>> staff = Staff([vA, p])

>>> f (staff)
\new Staff {

\new Voice {
\voiceOne
£r8
g’8
a’s
b’ 8

\new Voice {
\voiceOne
c’’8
b’ 8
a’4

}

\new Voice {
\voiceTwo
c’’4
c’'’4

>>

>>> show(staff, docs=True)

§ — T T — —
8 J i ﬁ

There’s a staff that sequentially contains a voice and a parallel container. The container in turn holds two voices

running simultaneously.

+a
L 18

g

It is now clear from the code that the last A belongs with the two descending eighth notes. But there’s still
no indication about a relationship of continuity between the first voice in the sequence (vA) and any of the two
following voices. Note that, while the LilyPond voice number commands setting may suggest that vA and vB
belong together, this is not the case. The LilyPond voice number commands simply set the direction of stems in
printed output.

148 Chapter 26. Working with threads

Abjad Documentation, Release 2.12

To see this more clearly, suppose we want to add a slur spanner starting on the first note and ending on one of the
last simultaneous notes. To attach the slur spanner to the voices we could try either:

>>> spannertools.SlurSpanner ([VvA, VvB])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/Jjosiah/Documents/Development/abjad/trunk/abjad/tools/spannertools/SlurSpanner/SlurSpanner.py",

DirectedSpanner.__init__ (self, components, direction)
File "/home/Jjosiah/Documents/Development/abjad/trunk/abjad/tools/spannertools/DirectedSpanner/DirectedSpanne
Spanner.__init__ (self, components)

File "/home/josiah/Documents/Development/abjad/trunk/abjad/tools/spannertools/Spanner/Spanner.py", line 45,
self._initialize_components (components)
File "/home/josiah/Documents/Development/abjad/trunk/abjad/tools/spannertools/Spanner/Spanner.py", line 220,
assert componenttools.all_are_thread_contiguous_components (leaves)
AssertionError

. Or...

>>> spannertools.SlurSpanner ([vA, vC])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/Jjosiah/Documents/Development/abjad/trunk/abjad/tools/spannertools/SlurSpanner/SlurSpanner.py",

DirectedSpanner.__init__ (self, components, direction)
File "/home/josiah/Documents/Development/abjad/trunk/abjad/tools/spannertools/DirectedSpanner/DirectedSpanne
Spanner.__init__ (self, components)

File "/home/Jjosiah/Documents/Development/abjad/trunk/abjad/tools/spannertools/Spanner/Spanner.py", line 45,
self._initialize_components (components)
File "/home/josiah/Documents/Development/abjad/trunk/abjad/tools/spannertools/Spanner/Spanner.py", line 220,
assert componenttools.all_are_thread_contiguous_components (leaves)
AssertionError

But both raise a contiguity error. Abjad needs to see an explicit connection between either vA and vB or between
vA and vC.

Observe the behavior of the iterate_thread_in_expr () iterator on the staff:

>>> vA_thread_signature = vA.parentage.containment_signature

>>> notes = iterationtools.iterate_thread_in_expr (staff, Note, vA_thread_signature)
>>> print list (notes)
[Note ("£’8"), Note("g’8"), Note("a’8"), Note("b’8")]

>>> vB_thread_signature = vB.parentage.containment_signature

>>> notes = iterationtools.iterate_thread_in_expr (staff, Note, vB_thread_signature)
>>> print list (notes)

[Note ("c’’8"), Note("b’8"), Note("a’4")]

>>> vC_thread_signature = vC.parentage.containment_signature

>>> notes = iterationtools.iterate_thread_in_expr (staff, Note, vC_thread_signature)
>>> print list (notes)

[Note("c”4") , Note("c”4")]

In each case we are passing a different thread signature to the iterate_thread_in_expr () iterator, so
each case returns a different list of notes.

We can see that the thread signature of each voice is indeed different by printing it:

>>> vA_thread_signature = vA.parentage.containment_signature
>>> vA_thread_signature
ContainmentSignature (Voice-151537580, Voice-151537580, Staff-156803500)

>>> vB_thread_signature = vB.parentage.containment_signature
>>> vB_thread_signature
ContainmentSignature (Voice-151536940, Voice-151536940, Staff-156803500)

>>> vC_thread_signature = vC.parentage.containment_signature
>>> vC_thread_signature
ContainmentSignature (Voice-156803372, Voice-156803372, Staff-156803500)

And by comparing them with the binary equality operator:

26.2. What are threads for? 149

Abjad Documentation, Release 2.12

>>> vA_thread_signature == vB_thread_signature
False
>>> vA_thread_signature == vC_thread_signature
False
>>> vB_thread_signature == vC_thread_signature
False

To allow Abjad to treat the content of, say, voices vA and vB as belonging together, we explicitly define a thread
between them. To do this all we need to do is give both voices the same name:

>>> vA.name =
>>> vB.name

"piccolo’
"piccolo’

Now vA and vB and all their content belong to the same thread:

>>> vA_thread_signature == vB_thread_signature
False

Note how the thread signatures have changed:

>>> vA_thread_signature = vA.parentage.containment_signature
>>> print vA_thread_signature
staff: Staff-156803500
voice: Voice-'piccolo’
self: Voice-'piccolo’

>>> vB_thread_signature = vB.parentage.containment_signature
>>> print vB_thread_signature
staff: Staff-156803500
voice: Voice-'piccolo’
self: Voice-'piccolo’

>>> vC_thread_signature = vC.parentage.containment_signature
>>> print vC_thread_signature
staff: Staff-156803500
voice: Voice-156803372
self: Voice-156803372

And how the iterationtools.iterate_thread_in_expr () function returns all the notes belonging
to both vA and vB when passing it the full staff and the thread signature of vA:

>>> notes = iterationtools.iterate_thread_in_expr (staff, Note, vA_thread_signature)
>>> print list (notes)
[Note ("£’8"), Note("g’8"), Note("a’8"), Note("b’8"), Note("c’’8"), Note("b’8"), Note("a’"4")]

Now the slur spanner can be applied to voices vA and vB:

>>> spannertools.SlurSpanner ([vA, VvB])
SlurSpanner ({f’8, g’8, a’8, b’8}, {c’'’8, b’8, a’4})

or directly to the notes returned by the iterate_thread_in_expr () iteration tool, which are the notes
belonging to both vA and vB:
>>> notes = iterationtools.iterate_thread_in_expr (staff, Note, VvA_thread_signature)

>>> spannertools.SlurSpanner (list (notes))
SlurSpanner (£’8, g’8, a’8, b’8, c’’8, b’8, a’4)

>>> show(staff, docs=True)

) ——
' - T
-

L
L 18
-0

26.3 Coda

We could have constructed this score in a simpler way with only two voices, one of them starting with a LilyPond
skip:

150 Chapter 26. Working with threads

Abjad Documentation, Release 2.12

>>> vX = Voice (notetools.make_notes([5, 7, 9, 11, 12, 11, 91, [(1, 8)] = 6 + [(1, 4)1))
>>> vY = Voice([skiptools.Skip((2, 4))] + Note(l2, (1, 4)) * 2)

>>> mark = marktools.LilyPondCommandMark (' voiceOne’) (vX[0])

>>> mark = marktools.LilyPondCommandMark (' voiceTwo’) (vY[0])

>>> staff = Staff ([vX, VvY])

>>> staff.is_parallel = True

>>> f (staff)
\new Staff <<
\new Voice {

\voiceOne
fr8
g'8

'8

'8

rs

"8

4

’

8

0 OQ 0w

}

\new Voice {
\voiceTwo
s2
c’'’4
c’’4

>>

>>> show (staff, docs=True)

A : — ,-—--._3

bor :

L
il

26.3. Coda 151

Abjad Documentation, Release 2.12

152 Chapter 26. Working with threads

Part V

Reference manual

153

CHAPTER
TWENTYSEVEN

ANNOTATIONS

Annotate components with user-specific information for future use.

Annotations do not impact formatting.

27.1 Creating annotations

Use mark tools to create annotations:

>>> annotation = marktools.Annotation (’special pitch’, pitchtools.NamedChromaticPitch(’bs’))

>>> annotation
Annotation (’ special pitch’, NamedChromaticPitch(’'bs’))

27.2 Attaching annotations to a component

Attach annotations to any component with attach () :
>>> note = Note("c’4")

>>> annotation.attach (note)
Annotation ('’ special pitch’, NamedChromaticPitch(’bs’)) (c’4)

>>> annotation
Annotation (' special pitch’, NamedChromaticPitch(’bs’)) (c’4)

>>> another_annotation = marktools.Annotation(’special pitch’, pitchtools.NamedChromaticPitch(’bs’))
>>> another_annotation.attach (note)
Annotation(’special pitch’, NamedChromaticPitch(’bs’)) (c’4)

>>> another_annotation
Annotation ('’ special pitch’, NamedChromaticPitch(’bs’)) (c’4)

27.3 Getting the annotations attached to a component

Use mark tools to get all the annotations attached to a component:

>>> marktools.get_annotations_attached_to_component (note)
(Annotation (' special pitch’, NamedChromaticPitch(’bs’)) (c’4), Annotation(’special pitch’, NamedChromaticPitch

27.4 Detaching annotations from a component one at a time

Use detach () to detach annotations from a component one at a time:

155

Abjad Documentation, Release 2.12

>>> annotation.detach ()
Annotation(’special pitch’, NamedChromaticPitch(’bs’))

>>> annotation
Annotation ('’ special pitch’, NamedChromaticPitch(’bs’))

27.5 Detaching all annotations attached to a component at once

Or use mark tools to detach all annotations attachd to a component at once:

>>> print marktools.detach_annotations_attached_to_component (note)
(Annotation (' special pitch’, NamedChromaticPitch(’bs’)),)

>>> marktools.get_annotations_attached_to_component (note)
)

27.6 Inspecting the component to which an annotation is attached

Use start_component to inspect the component to which an annotation is attached:

>>> annotation.attach (note)
Annotation (’special pitch’, NamedChromaticPitch(’bs’)) (c’4)

>>> annotation.start_component
Note ("c’4")

27.7 Inspecting annotation name

Use name to get the name of any annotation:

>>> annotation.name
"special pitch’

27.8 Inspecting annotation value

And use value to get the value of any annotation:

>>> annotation.value
NamedChromaticPitch ("bs’)

156 Chapter 27. Annotations

CHAPTER
TWENTYEIGHT

ARTICULATIONS

Articulations model staccati, marcati, tenuti and other symbols. Articulations attach notes, rests or chords.

28.1 Creating articulations

Use marktools to create articulations:

>>> articulation = marktools.Articulation(’turn’)

>>> articulation
Articulation (’turn’)

28.2 Attaching articulations to a leaf

Use attach () to attach articulations to a leaf:

>>> staff = Staff([])

>>> key_signature = contexttools.KeySignatureMark (’'g’, ’'major’)

>>> key_signature.attach(staff)

KeySignatureMark (NamedChromaticPitchClass ('g’), Mode (‘major’)) (Staff{})

>>> time_signature = contexttools.TimeSignatureMark ((2, 4), partial = Duration(l, 8)
>>> time_signature.attach (staff)

TimeSignatureMark ((2, 4), partial=Duration(l, 8)) (Staff{})

>>> staff.extend("d’'8 £’8 a’8 d’'’8 £'’8 gs’4 r8 e’'8 gs’8 b’8 e’’8 gs’’8 a’4")

>>> articulation.attach (staff[5])
Articulation (’turn’) (gs’4)

>>> show (staff)

Dt e e i
GES S SHSSuFESSSiS

(The example is based on Haydn’s piano sonata number 42, Hob. XVI/27.)

28.3 Attaching articulations to many notes and chords at once

Use marktools to attach articulations to many notes and chords at one time:

>>> marktools.attach_articulations_to_notes_and_chords_in_expr (staff[:6], [’.’])

157

Abjad Documentation, Release 2.12

>>> show (staff)

L | _+_
' —

28.4 Getting the articulations attached to a leaf

Use marktools to get the articulations attached to a leaf:

>>> marktools.get_articulations_attached_to_component (staff[5])
(Articulation(’turn’) (gs’4), Articulation(’.’) (gs’4)

28.5 Detaching articulations from a leaf one at a time

Detach articulations by hand with detach () :

>>> articulation.detach ()
Articulation (’turn’)

>>> articulation
Articulation (’turn’)

>>> show (staff)

jd8

)] | : 1 . ﬂp’#. {t

u ’ - .

28.6 Detaching all articulations attached to a leaf at once

Use marktools to detach all articulations attached to a leaf at once:

>>> staff[0]
Note ("d’8")

>>> marktools.detach_articulations_attached_to_component (staff[0])
(Articulation(’.”),)

>>> show (staff)

5 J0@ N - o
B I

ba e e "=

i

28.7 Inspecting the leaf to which an articulation is attached

Use start_component to inspect the component to which an articulation is attached:
>>> articulation = marktools.Articulation (’turn’)

>>> articulation.attach(staff[-1])
Articulation (’turn’) (a’4)

>>> show (staff)

158 Chapter 28. Articulations

Abjad Documentation, Release 2.12

52 — ke
Fa

|
]TI' = %}!ﬂ ? "ljgiiﬂ-l 1

>>> articulation.start_component
Note ("a’4")

e
3

28.8 Understanding the interpreter display of an articulation that
is not attached to a leaf

The interpreter display of an articulation that is not attached to a leaf contains three parts:

>>> articulation = marktools.Articulation (’staccato’)

>>> articulation
Articulation (’ staccato’)

>>> print repr (articulation)
Articulation ('’ staccato’)

Articulation tells you the articulation’s class.
" staccato’ tells you the articulation’s name.
If you set the direction string of the articulation then that will appear, too:

>>> articulation.direction = ""’

>>> articulation

Articulation (' staccato’, Up)
>>> print repr (articulation)
Articulation (' staccato’, Up)

28.9 Understanding the interpreter display of an articulation that
is attached to a leaf

The interpreter display of an articulation that is attached to a leaf contains four parts:

>>> articulation.attach(staff[-1])
Articulation (’staccato’, Up) (a’4)

>>> articulation

Articulation (’staccato’, Up) (a’4)
>>> print repr (articulation)
Articulation (’staccato’, Up) (a’4)

>>> show (staff)

L]] 4 1 i 1

= SN FESSSTESIFEES=

Articulation tells you the articulation’s class.

" staccato’ tells you the articulation’s name.
" ~' tells you the articulation’s direction string.
(a”4) tells you the component to which the articulation is attached.

If you set the direction string of the articulation to none then the direction will no longer appear:

28.8. Understanding the interpreter display of an articulation that is not attached to a leaf 159

Abjad Documentation, Release 2.12

>>> articulation.direction = None

>>> articulation
Articulation ('’ staccato’) (a’4)

28.10 Understanding the string representation of an articulation

The string representation of an articulation comprises two parts:

>>> str (articulation)
"—\\staccato’

— tells you the articulation’s direction string.

staccato tells you the articulation’s name.

28.11 Inspecting the LilyPond format of an articulation

Get the LilyPond input format of an articulation with format:

>>> articulation.lilypond_format
"—\\staccato’

Use £ () as a short-cut to print the LilyPond format of an articulation:

>>> f (articulation)
-\staccato

28.12 Controlling whether an articulation appears above or below
the staff

Setdirectionto ' ~’ to force an articulation to appear above the staff:

>>> articulation.direction = ""’/

>>> show (staff)

D — .. Egr l: #‘:?# It

-

Setdirectionto ’_’ to force an articulation to appear above the staff:

>>> articulation.direction = ’_'

>>> show (staff)

3
F

oo
— ——
e

22— il -
e S 1He =

Set direction to none to allow LilyPond to position an articulation automatically:

>>> articulation.direction = None

>>> show (staff)

160 Chapter 28. Articulations

Abjad Documentation, Release 2.12

52 — ke
Fa

L) — , il *%1j q_;}.i$if-l' —

28.13 Getting and setting the name of an articulation

Set the name of an articulation to change the symbol an articulation prints:

>>> articulation.name = ’staccatissimo’

>>> show (staff)

=T e 47#'—34;;

-
L 1

SESits it

28.14 Copying articulations

Use copy . copy () to copy an articulation:

>>> import copy
>>> articulation_copy_1l = copy.copy(articulation)

>>> articulation_copy_1
Articulation (’staccatissimo’)

>>> articulation_copy_1l.attach(staff[1])
Articulation (’staccatissimo’) (£’ 8)

>>> show (staff)

ha i
Dbo & R i
1y F A lL r—| y a— I“_

Or use copy .deepcopy () to do the same thing.

28.15 Comparing articulations

Articulations compare equal with equal direction names and direction strings:

>>> articulation.name
’staccatissimo’
>>> articulation.direction

>>> articulation_copy_1l.name
’staccatissimo’
>>> articulation_copy_1l.direction

>>> articulation == articulation_copy_1
True

Otherwise articulations do not compare equal.

28.13. Getting and setting the name of an articulation

161

Abjad Documentation, Release 2.12

28.16 Overriding attributes of the LilyPond script grob

Override attributes of the LilyPond script grob like this:

>>> staff.override.script.color = ’red’

>>> f (staff)
\new Staff \with ({
\override Script #’color = #red
boA
\key g \major
\partial 8
\time 2/4
d’8
f’8 -\staccatissimo -\staccato
a’8 -\staccato
d’’8 —-\staccato
£7/78 —\staccato
gs’4 —\staccato
r8
e’8
gs’8
b’ 8
e’’8
gsllg
a’4 -\staccatissimo -\turn

>>> show (staff)

) oo
A.-n "'-E L - t = E
Fan r1 O 1 Fi 1
< i : F "

See the LilyPond documentation for a list of script grob attributes available.

162

Chapter 28. Articulations

CHAPTER
TWENTYNINE

CHORDS

29.1 Making chords from a LilyPond input string

You can make chords from a LilyPond input string:

>>> chord = Chord("<c’ d’ bf’>4")

>>> show (chord)

=

29.2 Making chords from chromatic pitch humbers and duration

You can also make chords from chromatic pitch numbers and duration:

>>> chord = Chord ([0, 2, 10], Duration(l, 4))

>>> show (chord)

=

29.3 Getting all the written pitches of a chord at once

You can get all the written pitches of a chord at one time:

>>> chord.written_pitches
(NamedChromaticPitch("c’ "), NamedChromaticPitch("d’"), NamedChromaticPitch ("bf’"))

Abjad returns a read-only tuple of named chromatic pitches.

29.4 Getting the written pitches of a chord one at a time

You can get the written pitches of a chord one at a time:

>>> chord.written_pitches[0]
NamedChromaticPitch ("c’")

Chords index the pitch they contain starting from 0 (just like tuples and lists).

163

Abjad Documentation, Release 2.12

29.5 Adding one pitch to a chord at a time

Use append () to add one note to a chord.
You can add a pitch to a chord with a chromatic pitch number:

>>> chord.append (9)

>>> show (chord)

Or you can add a pitch to a chord with a chromatic pitch name:

>>> chord.append ("df’’"")

>>> show (chord)

Chords sort their pitches every time you add a new one.

This means you can add pitches to your chord in any order.

29.6 Adding many pitches to a chord at once

Use extend () to add many pitches to a chord.
You can use chromatic pitch numbers:

>>> chord.extend ([3, 4, 14]

>>> show (chord)

Or you can chromatic pitch names:

>>> chord.extend(["g’’", "af’’""])

>>> show (chord)

b

29.7 Deleting pitches from a chord

Delete pitches from a chord with del () :

>>> del (chord[0]

164

Chapter 29. Chords

Abjad Documentation, Release 2.12

>>> show (chord)

b

>>> del (chord[0]

>>> show (chord)

b

Negative indices work too:

>>> del (chord[-1]

>>> show (chord)

29.8 Formatting chords

Get the LilyPond input format of any Abjad object with format:

>>> chord.lilypond_format
"<ef’ e’ a’ bf’ df’’ 4’7 g’ ’>4"

Use £ () as a short-cut to print the LilyPond input format of any Abjad object:

>>> f (chord)
<ef’ e’ a’ bf’ df’’ d’’ g'’>4

29.9 Working with note heads

Most of the time you will work with the pitches of a chord. But you can get the note heads of a chord, too:

>>> chord.note_heads
(NoteHead ("ef’ "), NoteHead("e’"), NoteHead("a’"), NoteHead("bf’"), NoteHead("df’’"), NoteHead("d’’"), NoteHeac

This is useful when you want to apply LilyPond overrides to note heads in a chord one at a time:

>>> chord[2] .tweak.color = 'red’
>>> chord[3] .tweak.color = "blue’
>>> chord[4] .tweak.color = ’"green’

>>> f (chord)

ef’

ar

\tweak #’color #red
Qv

\tweak #’color #blue
bf’

\tweak #’color #green
daf’’

29.8. Formatting chords 165

Abjad Documentation, Release 2.12

qar’
gll
>4

>>> show (chord)

29.10 Working with empty chords

Abjad allows empty chords:

>>> chord = Chord([], Duration(l, 4))

Abjad formats empty chords, too:

>>> f (chord)
<>4

But if you pass empty chords to show () LilyPond will complain because empty chords don’t constitute valid
LilyPond input.

When you are done working with an empty chord you can add pitches back into it chord in any of the ways
described above:

>>> chord.extend(["gf’"", "df"’", "g’’""])

>>> show (chord)

166 Chapter 29. Chords

CHAPTER
THIRTY

CONTAINERS

30.1 Creating containers

Create a container with components:

>>> container = Container ([Note("ds’16"), Note("cs’16"), Note("e’16"), Note("c’16")])

>>> show (container)

T

Or with a note-entry string:

>>> container = Container("ds’16 cs’16 e’16 c’16 d’2 ~ d’8")

>>> show (container)

o
Fal i] 2 | Y
B [T O] 1 1 kY

I 4T T a—

30.2 Inspecting music

Return the components in a container with music:

>>> container.music
(Note ("ds’"16"), Note("cs’1l6"), Note("e’l6"), Note("c’1l6"), Note("d’2"), Note("d’8"))

Or with a special call to __getslice_ :

>>> container([:]
Selection (Note ("ds’16"), Note("cs’1l6"), Note("e’l1l6"), Note("c’1l6"), Note("d’2"), Note("d’8"))

30.3 Inspecting length

Get the length of a container with len () :

>>> len (container)
6

167

Abjad Documentation, Release 2.12

30.4 Inspecting duration

Contents duration equals the sum of the duration of everything inside the container:

>>> container.contents_duration
Duration (7, 8)

30.5 Adding one component to the end of a container

Add one component to the end of a container with append:

>>> container.append(Note ("af’32"))

>>> show (container)

s ¢ : \ ba
{'J‘—#--ﬂ.- '—q-- I —

30.6 Adding many components to the end of a container

Add many components to the end of a container with extend:

>>> container.extend([Note("c’’”32"), Note("a’32")1])

>>> show (container)

0 A
o (x93 —— N b

30.7 Finding the index of a component

Find the index of a component with index:

>>> note = container|[7]

>>> container.index (note)
7

30.8 Inserting a component by index

Insert a component by index with insert:

>>> container.insert (-3, Note("g’32"))

>>> show (container)

P>

3

. fel

168 Chapter 30. Containers

Abjad Documentation, Release 2.12

30.9 Removing a component by index

Remove a component by index with pop:

>>> container.pop(-1)
Note ("a’32")

>>> show (container)

0
1y € = N1

AR LT I T N— 7

30.10 Removing a component by reference

Remove a component by reference with remove:

>>> container.remove (container[-1])

>>> show (container)

0
E=¢ H
. —

AR LA T T N—

Note: _ getslice_ ,_ setslice_ and__delslice__ remain to be documented.

30.11 Naming containers

You can name Abjad containers:

>>> flute_staff = Staff("c’8 d’8 e’8 f’8"

>>> flute_staff.name = 'Flute’

>>> violin_staff = Staff("c’8 d’8 e’8 f’8"

>>> violin_staff.name = ’'Violin’

>>> staff_group = scoretools.StaffGroup ([flute_staff, violin_staff]
>>> score = Score([staff_groupl])

Container names appear in LilyPond input:

>>> f (score)
\new Score <<
\new StaffGroup <<
\context Staff = "Flute" {
c’8
d’ 8
e’8
f’8
}
\context Staff = "Violin" {
c’8
d’ 8
e’8
f78

>>
>>

And make it easy to retrieve containers later:

30.9. Removing a component by index 169

Abjad Documentation, Release 2.12

>>> componenttools.get_first_component_in_expr_with_name (score,

Staff-"F1

But container names do not appear in notational output:

>>> show (

H

ute" {4}

score)

)

LESeee

LilyPond uses curly {

G

30.12 Understanding { } and << >>in LilyPond

\new Voice {

e''4

f£f''4

g'l4

gvv4

f£f''4

e''4

d''4

d''4 \fermata
}

s o)

 {an WL O E f 1

A Tl

"Flute’)

} braces to wrap a stream of musical events that are to be engraved one after the other:

LilyPond uses skeleton << >> braces to wrap two or more musical expressions that are to be played at the same

time:

\new Staff <<
\new Voice {

}

\voiceOne
e''4
f''4
gl'4
gl'4
f''4
e''4
d''4

d''4 \fermata

\new Voice {

\voiceTwo
c''4

c''4

b'4

l'4

l'8

- ©

4

@
@
b
o
b'4
b'4 \fermata

170

Chapter 30. Containers

Abjad Documentation, Release 2.12

>>
o
J!ll
S e e B
o/

The examples above are both LilyPond input.

The most common use of LilyPond { } is to group a potentially long stream of notes and rests into a single
expression.

The most common use of LilyPond << >> is to group a relatively smaller number of note lists together poly-
phonically.

30.13 Understanding sequential and parallel containers

Abjad implements LilyPond { } and << >> in the container is_parallel attribute.
Some containers set is_parallel to false at initialization:
staff = Staff([])

staff.is_parallel
False

Other containers set is_parallel to true:

score = Score([])
score.is_parallel
True

30.14 Changing sequential and parallel containers

Set is_parallel by hand as necessary:

>>> voice_1 = Voice(r"e’’4 £'74 g'’4 g'’4 £'74 e'’4 d’"4 d’’4 \fermata")
>>> voice_2 = Voice(r"c’’4 c'""4 b'4 c'’4 c’'’8 b’'8 c’'’4 b’4 b’4 \fermata")
>>> staff = Staff ([voice_1, voice_2])

>>> staff.is_parallel = True

>>> marktools.LilyPondCommandMark (/ voiceOne’) (voice_1)
LilyPondCommandMark (' voiceOne’) (Voice{8})

>>> marktools.LilyPondCommandMark (/ voiceTwo’) (voice_2)
LilyPondCommandMark (' voiceTwo’) (Voice{9})

>>> show (staff)

Fa

J!ll

S i = B B
Ao/

The staff in the example above is set to parallel after initialization to create a type of polyphonic staff:

>>> f (staff)
\new Staff <<
\new Voice {

\voiceOne
e’ 4
frr4
g’ "4
gl’4
frr4

30.13. Understanding sequential and parallel containers 171

Abjad Documentation, Release 2.12

e’’4
d’r’r4
d’’4 -\fermata
}
\new Voice {
\voiceTwo
c’'’4

-\fermata

>>

30.15 Overriding containers

The symbols below are black with fixed thickness and predetermined spacing:

>>> staff = Staff("c’4 d’4 e’4 £'4 g’4 a’4 g’'2")
>>> slur_1 = spannertools.SlurSpanner (staff[:2])
>>> slur_2 = spannertools.SlurSpanner (staff[2:4])
>>> slur_3 = spannertools.SlurSpanner (staff[4:6])

>>> f (staff)
\new Staff {
rg
"4
(
)

’
14
2

14

)

N BB D DD

2

Q Q0 Q Q

>>> show (staff)

4} N T
o) I 1 I 1
Fal i) | I I 1 1
'.-J [

—
But you can override LilyPond grobs to change the look of Abjad containers:

>>> staff.override.staff_symbol.color = "blue’

>>> f (staff)
\new Staff \with {

\override StaffSymbol #’color = #blue
oA
"4 (
)
(
)
(

)

’

’

~

Q ©Q Hh O QQ
I S N)

>>> show (staff)

4} T
o) I 1 I 1
Fal i) | I I 1 1
'.-J [

172 Chapter 30. Containers

Abjad Documentation, Release 2.12

30.16 Overriding containers’ contents

You can override LilyPond grobs to change the look of containers’ contents, too:

>>> staff.override.note_head.color = ’red’
>>> staff.override.stem.color = ’red’

>>> f (staff)
\new Staff \with {

\override NoteHead #’color = #red
\override StaffSymbol #’color = #blue
\override Stem #’color = #red
boA
c’4 (
da’4d)
e’ 4 (
£fr4)
g4 (
a4)
g’2

>>> show (staff)

Wi
\
(

o
.~
ol

30.17 Removing container overrides

Delete grob overrides you no longer want:

>>> del (staff.override.staff_symbol)

>>> f (staff)
\new Staff \with {

\override NoteHead #’color = f#red
\override Stem #’color = #red
PoA
c’'d (
d’4)
e’d (
fr4)
g4
a4)
g’2

>>> show (staff)

30.16. Overriding containers’ contents 173

Abjad Documentation, Release 2.12

174 Chapter 30. Containers

CHAPTER
THIRTYONE

DURATIONS

31.1 Introduction

Abjad publishes information about many durated score objects.
Notes, rests, chords and skips carry some duration attributes:
>>> note = Note (0, (3, 16))

>>> measure = Measure((3, 16), [notel)
>>> staff = stafftools.RhythmicStaff ([measure])

>>> show (staff)

-

>>> note.written_duration
Duration (3, 16)

Tuplets, measures, voices, staves and the other containers carry duration attributes, too:
>>> tuplet = tuplettools.FixedDurationTuplet (Duration (3, 16), "c’16 c’ c’ c’ c'"

>>> measure = Measure((3, 16), [tuplet])
>>> staff = stafftools.RhythmicStaff ([measure])

>>> show (staff)

N ;

>>> tuplet.multiplier
Multiplier (3, 5)

The next chapters document core duration concepts in Abjad.

31.2 Assignability

Western notation readily admits rational values like 1 /4. But values like 1 /5 notate only with tuplet brackets or
special time signatures. Abjad formalizes the difference between rationals like 1 /4 and 1/5 in the definition of
rational assignability.

Rational values n/d are assignable when and only when numerator n is of the form k (2 xu-7) and denominator
d is of the form 2« xv. In this definition u and v must be nonnegative integers, k must be a positive integer, and
j must be either O or 1.

Abjad initializes notes, rests and chords with assignable durations only.

175

Abjad Documentation, Release 2.12

31.3 Prolation

Abjad uses prolation as a cover term for rhythmic augmentation and diminution. Augmentation increases the
duration of notes, rests and chords. Diminution does the opposite. Western notation employs tuplet brackets and
special types of time signature to effect prolation.

31.3.1 Tuplet prolation

Tuplets prolate their contents:

>>> tuplet = Tuplet (Fraction(5, 4), 'c8 c c c’)
>>> staff = stafftools.RhythmicStaff ([Measure((5, 8), [tuplet])])
>>> beam = beamtools.BeamSpanner (tuplet)

>>> show (staff)

4:5

§444

>>> note = tuplet[0]
>>> note.written_duration
Duration (1, 8)

>>> note.prolation
Multiplier (5, 4)

>>> note.duration
Duration (5, 32)

Notes here with written duration 1/ 8 carry prolation factor 5/4 and prolated duration 5/32.

Western notation does not recognize tuplet brackets carrying one-to-one ratios. Such trivial tuplets may, however,
be useful during different stages of composition, and Abjad allows them for that reason. Trivial tuplets carry zero
prolation. Zero-prolated tuplets neither augment nor diminish the music they contain.

31.3.2 Meter prolation

Time signatures in western notation usually carry a denominator equal to a nonnegative integer power of 2. Abjad
calls these conventional meters binary meters. Denominators equal to integers other than integer powers of 2 are
also possible. Such nonbinary meters rhythmically diminish the contents of the measures they govern:

>>> measure = Measure((4, 10), 'c8 c c c’)
>>> beam = beamtools.BeamSpanner (measure)
>>> staff = stafftools.RhythmicStaff ([measure])

>>> show (staff)

FREER

>>> note = staff.leaves[0]
>>> note.prolation
Multiplier (4, 5)

>>> note.duration
Duration (1, 10)

>>> note.prolation
Multiplier (4, 5)

176 Chapter 31. Durations

Abjad Documentation, Release 2.12

>>> note.duration
Duration (1, 10)

Notes here with written duration 1 /8 carry prolation factor 4 /5 and prolated duration 1/10.

Abjad implements one of two competing nonbinary meter-interpretation schemes. The first, implicit meter-
interpretation given here, follows, for example, Ferneyhough, in that nonbinary meters prolate the contents of the

measures they govern implicitly, ie, without recourse to tuplet brackets

. The second, explicit meter-interpretation,

which we find in, for example, Sciarrino, insists instead on the presence of some tuplet bracket, usually en-
graved in some broken or incomplete way. The implicit meter-interpretation that Abjad implements differs from
the explicit meter-interpretation native to LilyPond. Abjad will eventually implement both implicit and explicit

meter-interpretation, settable on a container-by-container basis.

31.3.3 The prolation chain

Tuplets nest and combine freely with different types of meter. When two or more prolation donors conspire, the

prolation factor they collectively bestow on leaf-level music equals the
in the prolation chain. All durated components carry a prolation chain:

>>> tuplet = tuplettools.FixedDurationTuplet (Duration (4, 8)
>>> beamtools.BeamSpanner (tuplet)

BeamSpanner ({cl6, cl6, cl6, cl6, cle6, cl6, clé6})

>>> measure = Measure((4, 10), [tuplet])

>>> staff = stafftools.RhythmicStaff ([measure])

>>> show (staff)

T8

>>> measure.prolation
Fraction (1, 1)

>>> note = measure.leaves[0]
>>> note.prolation
Multiplier (32, 35)

>>> note.duration
Duration (2, 35)

Notes here with written duration 1 /16 carry prolated duration 2/ 35.

31.4 Duration types

Abjad publishes duration information about all score components.

31.4.1 Written duration

cumulative product of all prolation factors

g ‘el @ e @ @ @ @)

Abjad uses written duration to refer to the face value of notes, rests and chords prior to prolation. Abjad written
duration corresponds to the informal names most frequently used when talking about note duration.

These sixteenth notes are worth a sixteenth of a whole note:
>>> measure = Measure((5, 16), "cl6 c c c c")

>>> pbeam = beamtools.BeamSpanner (measure)
>>> staff = stafftools.RhythmicStaff ([measure])

>>> show (staff)

31.4. Duration types

177

Abjad Documentation, Release 2.12

>>> note = measure[0]

>>> note.written_duration
Duration (1, 16)

These sixteenth notes are worth more than a sixteenth of a whole note:

>>> tuplet = tuplettools.FixedDurationTuplet (Duration (5, 16), "c8 c c c c")
>>> beam = beamtools.BeamSpanner (tuplet)

>>> measure = Measure((5, 16), [tuplet])

>>> staff = stafftools.RhythmicStaff ([measure])

>>> show (staff)

2

FREREE

>>> note = tuplet[0]
>>> note.written_duration
Duration (1, 8)

The notes in these examples are ‘sixteenth notes’ that carry different prolated durations. Abjad written duration
captures the fact that the note heads and flag counts of the two examples match.

Written duration is a user-assignable rational number. Users can assign and reassign the written duration of notes,
rests and chords at initialization and at any time during the life of the note, rest or chord. Written durations must be
assignable; see the chapter on assignability for details. Note that Abjad containers do not carry written duration.

31.4.2 Prolated duration

Prolation refers to the duration-scaling effects of tuplets and special types of time signature. Prolation is a way of
thinking about the contribution that musical structure makes to the duration of score objects. All durated Abjad
objects carry a prolated duration. Prolated duration is an emergent property of notes, tuplets and other durated
objects. The prolated duration of notes, rests and chords equals the product of the written duration and prolation of
those objects. The prolated duration of tuplets, measures and other containers equals the the container’s duration
interface multiplied by the container’s prolation.

31.4.3 Contents duration

Abjad defines the contents duration of tuplets, measures, voices, staves and other containers equal to the sum of
the preprolated duration of each of the elements in the container.

The measure here contains two eighth notes and tuplet. These elements carry preprolated durations equal to 1/ 8,
1/8 and 2/ 8, respectively:

>>> notes = 2 x Note("c’8"

>>> beam = beamtools.BeamSpanner (notes)

>>> tuplet = tuplettools.FixedDurationTuplet (Duration(2, 8), "c’8 c c")
>>> pbeam = beamtools.BeamSpanner (tuplet)

>>> measure = Measure((4, 8), notes + [tuplet])

>>> staff = stafftools.RhythmicStaff ([measure])

>>> show (staff)

3

et

>>> measure.contents_duration
Duration (1, 2)

178 Chapter 31. Durations

Abjad Documentation, Release 2.12

The contents duration of the measure here equals 1/8 + 1/8 + 2/8 = 4/8.

31.4.4 Target duration

Abjad defines the target duration of fixed-duration tuplets equal to composer-settable duration to which the tuplet
prolates its contents.

This fixed-duration tuplet carries a target duration equal to 4/ 8:

>>> tuplet = tuplettools.FixedDurationTuplet (Duration (4, 8), "c’8 c c c c")

>>> pbeam = beamtools.BeamSpanner (tuplet)

>>> measure = Measure((4, 8), [tuplet])
>>> staff = stafftools.RhythmicStaff ([measure])

>>> show (staff)

5

§444

>>> tuplet.target_duration
Duration (1, 2)

The tuplet contents sum to 5/ 8. But tuplet target duration always equals 4/ 8.

31.4.5 Multiplied duration

Abjad defines the multiplied duration of notes, rests and chords equal to the product of written duration and leaf
multiplier.

The first two notes below carry leaf mulitipliers equal to 2/1:

>>> notes = 4 x Note("c’1le6"

>>> notes[0] .duration_multiplier = Fraction(2, 1)
>>> notes[1l].duration_multiplier = Fraction(2, 1)
>>> measure = Measure((3, 8), notes)

>>> beam = beamtools.BeamSpanner (measure)
>>> staff = stafftools.RhythmicStaff ([measure])

>>> show (staff)

455

>>> note = measure[0]
>>> note.written_duration
Duration (1, 16)

>>> note.duration_multiplier
Multiplier (2, 1)

>>> note.written_duration * note.duration_multiplier
Duration (1, 8)

>>> note.multiplied_duration

Duration (1, 8)

The written duration of these first two notes equals 1/16 and so the multiplied duration of these first two notes
equals 1/16 » 2/1 = 1/8.

31.5 Duration initialization

Durated Abjad classes initialize duration from arguments in the form (n, d) with numerator n and denominator d.

31.5. Duration initialization 179

Abjad Documentation, Release 2.12

>>> note = Note("c’8.")

>>> show (note)

Durated classes include notes, rests, chords, skips, tuplets and measures.
>>> tuplet = tuplettools.Tuplet((2, 3), "c’8 c’8 c’8"
>>> beamtools.BeamSpanner (tuplet)

BeamSpanner ({c’8, c’8, c’8})
>>> staff = stafftools.RhythmicStaff ([tuplet])

>>> show (staff)

3

eddd

Abjad restricts notes, rests, chords and skips to durations like 3/1 6 that can be written with dots, beams and flags
without ties or brackets. Abjad allows arbitrary positive durations like 5/ 8 for tuplets and measures.

>>> tuplet = tuplettools.Tuplet ((5, 4), "c’8 c’8 c’8 c’8"

>>> beamtools.BeamSpanner (tuplet)

BeamSpanner ({c’8, c’8, c’8, c’8})
>>> staff = stafftools.RhythmicStaff ([tuplet])

>>> show (staff)

q4:5

edddd

Abjad supports breves.

>>> note = Note (0, (2, 1))

>>> show (note)

And longas.

>>> note = Note (0, (4, 1))

>>> show (note)

-~
-

]

e

Note: The restriction that the written durations of notes, rests, chords and skips be expressible with some com-
bination of dots, flags and beams without recourse to ties and brackets generalizes to the condition of note_head
assignability. Values (n, d) are note_head-assignable when and only when (1) d is a nonnegative integer power of
2; (2) n is either a nonnegative integer power of 2 or is a nonnegative integer power of 2, minus 1; and (3) n/d is
less than or equal to 8. Condition (3) captures the fact that LilyPond provides no glyph with greater duration than
the maxima (equal to eight whole notes).

Note: Integer forms like 4 as a substitute for (4, 1) inNote (0, (4, 1)) are undocumented but allowed.

180 Chapter 31. Durations

Abjad Documentation, Release 2.12

Note: Abjad allows maxima note heads as in Note (0, (8, 1)). LilyPond implements a \maxima com-
mand but does not supply a corresponding glyph for the note head.

31.6 LilyPond multipliers

LilyPond provides an asterisk * operator to scale the durations of notes, rests and chords by arbitrarily positive
rational values. LilyPond multipliers are inivisible and generate no typographic output of their own. However,
while independent from the typographic output, LilyPond multipliers do factor in in calculations of duration and
time.

Abjad implements LilyPond multpliers as the settable duration.multiplier attribute of notes, rests and chords.

>>> note = Note("c’4")

>>> note.duration_multiplier = Fraction(1l, 2)
>>> note.duration_multiplier

Multiplier (1, 2)

>>> f (note)
c’4 x 1/2

Abjad also implements a duration.multiplied attribute to examine the duration of a note, rest or chord as affected
by the multiplier.

>>> note.multiplied_duration
Duration (1, 8)

LilyPond multipliers give the half notes here multiplied durations equal to a quarter note.

>>> notes = Note("c’4") = 4

>>> multiplied_note = Note(0, (1, 2))

>>> multiplied_note.duration_multiplier = Fraction(l, 2)
>>> multiplied_notes = multiplied_note * 4

>>> top = stafftools.RhythmicStaff (notes)

>>> pbottom = stafftools.RhythmicStaff (multiplied_notes)
>>> staves = scoretools.StaffGroup([top, bottom])

>>> show (staves)

Note: Abjad models multiplication fundamentally differently than prolation . See the chapter on Prolation for
more information.

Note: The LilyPond multiplication * operator differs from the Abjad multiplication * operator. LilyPond multi-
plication scales duration of LilyPond notes, rests and chords. Abjad multiplication copies Abjad containers and
leaves.

31.6. LilyPond multipliers 181

Abjad Documentation, Release 2.12

31.7 Duration interfaces compared

type core | leaf | container | measure | tuplet | fd tuplet | fm tuplet
contents - - R R R R R
multiplied | — R - - - R R
multiplier - RW | - R R R RW
preprolated | R R R R R R R
prolated R R R R R R R
prolation R R R R R R R

target - - - - - RwW -

written - RW | - - - - -

The table contains a total of only four settable duration attributes, divided among only three classes. Durated
Abjad classes offer up many read-only duration attributes but very few read-write duration attributes.

All classes carry all three prolation-related attributes because all classes can nest inside containers. It is possible,
for example, to nest an entire voice within a fixed-duration tuplet.

Note: Leaf multipliers and tuplet multipliers differ.

182 Chapter 31. Durations

CHAPTER
THIRTYTWO

INSTRUMENT MARKS

Instrument marks appear as markup in the left margin of your score.

32.1 Creating instrument marks

Use contexttools to create instrument marks:

>>> instrument_mark = contexttools.InstrumentMark ('Violin ", "Vn.)

>>> instrument_mark
InstrumentMark (instrument_name=’Violin ’, short_instrument_name=’'Vn. ')

32.2 Attaching instrument marks to a component

Use attach () to attach any mark to a component:

>>> staff = Staff("c’4 d’4 e’4 £74")

>>> instrument_mark.attach (staff)
InstrumentMark (instrument_name=’Violin ’, short_instrument_name=’'Vn. ') (Staff{4})

>>> show (staff)

4]
|
Violin L{:\E L & | 1}
(3] -

32.3 Getting the instrument mark attached to a component

Use contexttools to get the instrument mark attached to a component:

>>> contexttools.get_instrument_mark_attached_to_component (staff)

InstrumentMark (instrument_name=’Violin ’, short_instrument_name=’'Vn. ') (Staff{4})

32.4 Getting the instrument in effect for a component

Or to get the instrument currently in effect for a component:

>>> contexttools.get_effective_instrument (staff[1])
InstrumentMark (instrument_name=’Violin ', short_instrument_name='Vn. ’) (Staff{4})

183

Abjad Documentation, Release 2.12

32.5 Detaching instrument marks from a component one at a time

Use detach () to detach instrument marks from a component one at a time:

>>> instrument_mark.detach ()
InstrumentMark (instrument_name=’Violin ’, short_instrument_name=’'Vn. ')

>>> instrument_mark
InstrumentMark (instrument_name=’Violin ’, short_instrument_name=’'Vn. ')

>>> show (staff)

i M) 1 1 :

DaaS S

32.6 Detaching all instrument marks attached to a component at
once

Or use contexttools to detach instrument marks all at once:
>>> instrument_mark = contexttools.InstrumentMark (’Violin ', ’"Vn.)

>>> instrument_mark.attach (staff)
InstrumentMark (instrument_name=’Violin ’, short_instrument_name=’'Vn. ') (Staff{4})

>>> instrument_mark
InstrumentMark (instrument_name=’Violin ', short_instrument_name='Vn. ’) (Staff{4})

>>> show (staff)

Violin ?9 ‘! ‘f I i i —

>>> contexttools.detach_instrument_marks_attached_to_component (staff)
(InstrumentMark (instrument_name='Violin ', short_instrument_name=’'Vn. ’),)

>>> instrument_mark
InstrumentMark (instrument_name=’Violin ’, short_instrument_name=’'Vn. ')

>>> show (staff)

g —

32.7 Inspecting the component to which an instrument mark is at-
tached

Use start_component to inspect the component to which an instrument mark is attached:
>>> instrument_mark = contexttools.InstrumentMark ('Flute 7, 'Fl.)

>>> instrument_mark.attach (staff)
InstrumentMark (instrument_name=’Flute ’, short_instrument_name=’'F1l. ') (Staff{4})

>>> show (staff)

184 Chapter 32. Instrument marks

Abjad Documentation, Release 2.12

)
Flut-E i! FiK) : |

>>> instrument_mark.start_component
Staff{4}

32.8 Inspecting the instrument name of an instrument mark

Use instrument_name_markup to get the instrument name of any instrument mark:

>>> instrument_mark.instrument_name_markup
Markup ((' Flute’,))

32.9 Inspecting the short instrument name of an instrument mark

And use short_instrument_name_markup to get the short instrument name of any instrument mark:

>>> instrument_mark.short_instrument_name_markup
Markup (('F1.7,))

32.8. Inspecting the instrument name of an instrument mark 185

Abjad Documentation, Release 2.12

186 Chapter 32. Instrument marks

CHAPTER
THIRTYTHREE

/0

33.1 Reopening Abjad PDFs

After you build a piece of notation and open with show () you will usually close the resulting PDF and continue
working, changing your output notation in an iterative and incremental way.

>>> staff = Staff("c’8 d’8 e’8 £'8 g’8 a’8 b’8 c’’8")
>>> show (staff)

But what if you need to go back and open the resulting PDF again? Abjad provides pdf () for precisely this
purpose. Type the following at the Abjad prompt to open the most recent PDF written by Abjad.

>>> pdf ()

If you want to open not the next-to-most recent PDF generated by Abjad, pass in a —1. And for the next-to-next-
to-most recent, pass in a —2, and so on.

33.2 Looking at LilyPond output

Abjad generates a LilyPond . 1y file for every Abjad expression that you build and show (). To look at these
LilyPond . 1y files that Abjad builds behind the scenes, use 1y ().

>>> 1y ()

% Abjad revision 2362
% 2009-06-25 10:30

\version "2.12.2"
\include "english.ly"
\include "/Users/trevorbaca/Documents/abjad/trunk/abjad/scm/abjad.scm"

\new Staff {
c'8

}

Abjad opens the LilyPond . 1y file in your favorite text editor.

These LilyPond . 1y files that Abjad generates all have the same basic structure. The current version of Abjad
and the date appear first, followed by the mandatory LilyPond version string and LilyPond directives for English

187

Abjad Documentation, Release 2.12

note names and the default Abjad . scm file. The remainder of the file is reserved for the LilyPond input code
corresponding to the expression you just built in Abjad.

When you are done looking at the LilyPond . 1y file quit your text editor to return to the Abjad interpreter.

33.3 Looking at the LilyPond log

If things go wrong when you call show () or one of the other Abjad functions that call LilyPond behind the
scenes, if may be helpful to examine the output that LilyPond writes to the LilyPond log.

>>> log ()

GNU LilyPond 2.12.2

Processing ~1420.1ly'

Parsing...

Interpreting music...

Preprocessing graphical objects...
Finding the ideal number of pages...
Fitting music on 1 page...

Drawing systems...

Layout output to “1420.ps'...
Converting to " ./1420.pdf'...

This is the normal output that LilyPond generates every time you call the program behind. When you are done
looking at the LilyPond log, quit your text editor to return to the Abjad interpreter.

188 Chapter 33. 1/0

CHAPTER
THIRTYFOUR

LILYPOND COMMAND MARKS

LilyPond command marks allow you to attach arbitrary LilyPond commands to Abjad score components.

34.1 Creating LilyPond command marks

Use marktools to create LilyPond command marks:

>>> lilypond_command_mark = marktools.LilyPondCommandMark ('bar "||"’, ’"after’)

>>> lilypond_command_mark
LilyPondCommandMark ("bar "|[|"")

34.2 Attaching LilyPond command marks to Abjad components

Use attach () to attach a LilyPond command mark to any Abjad component:

>>> import copy
>>> staff = Staff([])

>>> key_signature = contexttools.KeySignatureMark (’f’, ’'major’)

>>> key_signature.attach (staff)

KeySignatureMark (NamedChromaticPitchClass (' f£’), Mode (‘major’)) (Staff{})
>>> staff.extend(p("{ d’"’16 (c’’16 fs’’16 g’’16) }"))

>>> staff.extend(p("{ £’716 (e’’16 d’'16 c’'’16) }"))

>>> staff.extend(p("{ cs’’16 (d’"16 f£’’16 d’’16) }"))

>>> staff.extend(p("{ a’8 b’8 }"))

>>> staff.extend(p("{ d’"’16 (c’"’"16 fs’’16 g’’16)} "))

>>> staff.extend(p("{ £''16 (e’’16 d’'’16 c’'’16) }"))
>>> staff.extend(p("{ cs’’16 (d’"16 £’'16 d’’16) }"))
>>> staff.extend(p("{ a’8 b’8 c’"72 }"))

>>> lilypond_command_mark.attach(staff[-2])
LilyPondCommandMark (‘bar "|[|"") (b’ 8)

>>> show (staff)
n e b —
{ T I
b 2. [oater =,
i’ |

ks
w

|
:
)
i
|

i
L 18
=

34.3 Getting the LilyPond command marks attached to an Abjad
component

Use marktools to get the lilypond_command_marks attached to a leaf:

189

Abjad Documentation, Release 2.12

>>> marktools.get_lilypond_command_marks_attached_to_component (staff[-2])
(LilyPondCommandMark ("bar "||"") (b’8),)

34.4 Detaching LilyPond command marks from components one
at a time

Use detach () to detach LilyPond command marks one at a time:

>>> lilypond_command_mark.detach ()
LilyPondCommandMark (‘bar "||"")

>>> lilypond_command_mark
LilyPondCommandMark ("bar "|[|"")

>>> show (staff)
0 —

"“"m.‘.,—-‘—“-r-l—!
SES s =Erer=

3
il

34.5 Detaching all LilyPond command marks attached to a compo-
nent at once

Use marktools to detach all LilyPond command marks attached to a component at once:

>>> lilypond_command_mark_1 = marktools.LilyPondCommandMark ('bar "||"’, ’"closing’)
>>> lilypond_command_mark_1.attach(staff[-2])

LilyPondCommandMark (‘bar "|[|"") (b’8)

>>> lilypond_command_mark_2 = marktools.LilyPondCommandMark ('bar "||"’, ’closing’)
>>> lilypond_command_mark_2.attach(staff[-16])

LilyPondCommandMark ("bar "|[["") (b’ 8)

>>> show (staff)

4} ,,*"EE_'“ — —— r....|r f,f’EE_‘H — —— r_-1
i Il o L
.. Freierirrie . Frefer e s P
I
>>> marktools.detach_lilypond_command _marks_attached_to_component (staff[-16])
(LilyPondCommandMark ("baxr "|[""),)
>>> show (staff)
ﬂ frﬂéf—‘H rr—aﬁhhx lf,,-—-ﬁ r,__.III f,#?f_‘“ — IJ,,-——M r_-1 .
o 1 " 1
= i e L e o L
|

34.6 Inspecting the component to which a LilyPond command
mark is attached

Use start_component to inspect the component to which a LilyPond command mark is attached:

>>> lilypond_command_mark = marktools.LilyPondCommandMark ('bar "||"’, ’"closing’)
>>> lilypond_command_mark.attach(staff[-2])
LilyPondCommandMark ("bar "[["") (b’ 8)

190 Chapter 34. LilyPond command marks

Abjad Documentation, Release 2.12

>>> show (staff)

4 e PV N A Sy P |V m—— e __
e e o e e

:F 8 s III

>>> lilypond_command_mark.start_component
Note ("b’8")

34.7 Getting and setting the command name of a LilyPond com-
mand mark

Set the command_name of a LilyPond command mark to change the LilyPond command a LilyPond command
mark prints:

n wr

>>> lilypond_command_mark.command_name = ’bar

>>> show (staff)
0 -

" he #

. =
SRS R
| I

il

l

| 1N
™

——
-
1

!

L NN
i

PR

34.8 Copying LilyPond commands

Use copy .copy () to copy a LilyPond command mark:

>>> import copy
>>> lilypond_command_mark_copy_1l = copy.copy (lilypond_command_mark)

>>> lilypond_command_mark_copy_1
LilyPondCommandMark ("bar "|."")

>>> lilypond_command_mark_copy_1l.attach(staff[-1])
LilyPondCommandMark (‘bar "|."") (c’’2)

>>> show (staff)
o) Ry f

"_-1““m\ — =
ﬁt’* Creafarte

Or use copy .deepcopy () to do the same thing.

%

e e

L 18
a

34.9 Comparing LilyPond command marks

LilyPond command marks compare equal with equal command names:

>>> lilypond_command_mark.command_name
!bar n ‘ nr

>>> lilypond_command_mark_copy_1l.command_name
"bar "|."’

>>> lilypond_command_mark == lilypond_command_mark_copy_1
True

Otherwise LilyPond command marks do not compare equal.

34.7. Getting and setting the command name of a LilyPond command mark 191

Abjad Documentation, Release 2.12

192 Chapter 34. LilyPond command marks

CHAPTER

THIRTYFIVE

LILYPOND COMMENTS

LilyPond comments begin with the % sign. Abjad models LilyPond comments as marks.

35.1 Creating LilyPond comments

Use marktools to create LilyPond comments:

>>> comment_1 = marktools.LilyPondComment (' This is a LilyPond comment before a note.

>>> comment_1
LilyPondComment (' This is a LilyPond comment before a note.’)

35.2 Attaching LilyPond comments to leaves

Attach LilyPond comments to a note, rest or chord with attach ():

>>> note = Note("cs’’4")

>>> show (note)

>>> comment_1.attach (note)
LilyPondComment (' This is a LilyPond comment before a note.’) (cs’’4)

>>> f (note)
% This is a LilyPond comment before a note.
cs’’4

You can add LilyPond comments before, after or to the right of any leaf.

35.3 Attaching LilyPond comments to containers

Use attach () to attach LilyPond comments to a container:

>>> staff = Staff("c’8 d’8 e’8 £78")

>>> show (staff)

9]

S

", "before’)

193

Abjad Documentation, Release 2.12

>>> staff comment_1 = marktools.LilyPondComment ('Here is a LilyPond comment before the staff.’,

>>> staff_ comment_2 = marktools.LilyPondComment ('Here is a LilyPond comment in the staff opening.’,
>>> staff comment_3 = marktools.LilyPondComment ('Here is another LilyPond comment in the staff opening.’,
>>> staff_ comment_4 = marktools.LilyPondComment (' LilyPond comment in the staff closing.’, ’‘closing’)

>>> staff_ comment_5 = marktools.LilyPondComment (' LilyPond comment after the staff.’, ’after’)

>>> staff_ comment_1.attach (staff)

LilyPondComment (' Here is a LilyPond comment before the staff.’) (Staff{4})

>>> staff_ comment_2.attach (staff)

LilyPondComment (' Here is a LilyPond comment in the staff opening.’) (Staff{4})

>>> staff_comment_3.attach (staff)

LilyPondComment (’Here is another LilyPond comment in the staff opening.’) (Staff{4})
>>> staff_comment_4.attach (staff)

LilyPondComment (/ LilyPond comment in the staff closing.’) (Staff{4})

>>> staff comment_5.attach(staff)

LilyPondComment (/ LilyPond comment after the staff.’) (Staff{4})

>>> f (staff)

% Here is a LilyPond comment before the staff.

\new Staff {

Here is a LilyPond comment in the staff opening.

Here is another LilyPond comment in the staff opening.

Q. Q o° oe
<~ 0~

’

o 0 0

14

H O

% LilyPond comment in the staff closing.
}

LilyPond comment after the staff.

You can add LilyPond comments before, after, in the opening or in the closing of any container.

35.4 Getting the LilyPond comments attached to a component

Use marktools to get all the LilyPond comments attached to a component:

>>> marktools.get_lilypond_comments_attached_to_component (note)
(LilyPondComment (' This is a LilyPond comment before a note.’) (cs’’4),)

Abjad returns a tuple of zero or more LilyPond comments.

35.5 Detaching LilyPond comments from a component one at a
time

Use detach () to detach LilyPond comments from a component one at a time:

>>> comment_1 = marktools.get_lilypond_comments_attached_to_component (note) [0]

>>> comment_1.detach ()
LilyPondComment (/ This is a LilyPond comment before a note.’)

>>> f (note)
cs’’4

35.6 Detaching all LilyPond comments attached to a component at
once

Or use marktools to detach all LilyPond comments attached to a component at once:

194 Chapter 35. LilyPond comments

Abjad Documentation, Release 2.12

>>> for comment in marktools.get_lilypond_comments_attached_to_component (staff): print comment

LilyPondComment (' Here is a LilyPond comment before the staff.’) (Staff{4})
LilyPondComment (' Here is a LilyPond comment in the staff opening.’) (Staff{4})
LilyPondComment (' Here is another LilyPond comment in the staff opening.’) (Staff{4})
LilyPondComment (LilyPond comment in the staff closing.’) (Staff{4})

LilyPondComment (/LilyPond comment after the staff.’) (Staff{4})

>>> marktools.detach_lilypond_comments_attached_to_component (staff)
(LilyPondComment (' Here is a LilyPond comment before the staff.’), LilyPondComment ('Here is a LilyPond comment

>>> f (staff)
\new Staff {
c’8
d’s
e’8
fr8

35.7 Inspecting the component to which a LilyPond comment is
attached

Use start_component to inspect the component to which a LilyPond comment is attached:

>>> comment_1.attach (note)
LilyPondComment (/ This is a LilyPond comment before a note.’) (cs’’4)

>>> comment_1.start_component
Note ("cs’’4"

35.8 Inspecting contents string of a LilyPond comment

Use contents_string to inspect the written contents of a LiliyPond comment:

>>> comment_1.contents_string
"This is a LilyPond comment before a note.’

35.7. Inspecting the component to which a LilyPond comment is attached 195

Abjad Documentation, Release 2.12

196 Chapter 35. LilyPond comments

CHAPTER
THIRTYSIX

LILYPOND FILES

36.1 Making LilyPond files

Make a basic LilyPond input file with the 1i1ypondfiletools package:

>>> staff = Staff("c’8 d’8 e’8 f’8")
>>> lilypond_file = lilypondfiletools.make_basic_lilypond_file(staff)

>>> lilypond_file
LilyPondFile (Staff{4})

36.2 Inspecting file output

LilyPond input files that you create this way come equipped with many attributes that appear in file output:

>>> f(lilypond_file)
% Abjad revision 9810:9817
% 2013-03-24 23:58

\version "2.16.1"
\language "english"
\include "/home/josiah/Documents/Development/abjad/trunk/abjad/cfg/abjad.scm"

\score {
\new Staff {
c’8
d’8
e’8
fr8

36.3 Setting default paper size

Set default LilyPond paper size like this:

>>> lilypond_file.default_paper_size = ’"11x17’, ’'landscape’

>>> f (lilypond_file)
Abjad revision 9810:9817
% 2013-03-24 23:58

o

\version "2.16.1"
\language "english"
\include "/home/josiah/Documents/Development/abjad/trunk/abjad/cfg/abjad.scm"

(set-default-paper-size "11x17" ’landscape)

197

Abjad Documentation, Release 2.12

\score {
\new Staff {
c’8
d’ 8
e’8
fr8

36.4 Setting global staff size

Set global staff size like this:

>>> lilypond_file.global_staff_size = 16

>>> f(lilypond_file)
% Abjad revision 9810:9817
% 2013-03-24 23:58

\version "2.16.1"
\language "english"
\include "/home/josiah/Documents/Development/abjad/trunk/abjad/cfg/abjad.scm"

(set-default-paper-size "11x17" ’landscape)
(set—-global-staff-size 16)

\score {
\new Staff {
c’8
d’ 8
e’8
f’8

’

198 Chapter 36. LilyPond files

CHAPTER
THIRTYSEVEN

MEASURES

37.1 Understanding measures in LilyPond

In LilyPond you specify time signatures by hand and LilyPond creates measures automatically:

\new Staff {
\time 3/8
c'8

H- 0©© O 0O O 0O

ime 2/4

OQ.H)(DLQ?H’(DQ.(DQ.

N DD DD

S8 T s
Jeel il S o te 1

Here LilyPond creates five measures from two time signatures. This happens because behind-the-scenes LilyPond
time-keeping tells the program when measures start and stop and how to draw the barlines that come between
them.

37.2 Understanding measures in Abjad

Measures are optional in Abjad, too, and you may omit them in favor of time signatures:

>>> staff = Staff("c’8 d’8 e’8 d’8 e’8 f£’8 g’4 e'4 £'4 d’4 c'2")

>>> contexttools.TimeSignatureMark ((3, 8)) (staff)
TimeSignatureMark ((3, 8)) (Staff{ll})
>>> contexttools.TimeSignatureMark ((2, 4)) (staff[6])

TimeSignatureMark ((2, 4)) (g’4)

>>> show (staff)

4]

=

f
[

1

(3]
-

1

—

"3

LA

==

4

"

=

Bl

But you may also include explicit measures in the Abjad scores you build. The following sections explain how.

199

Abjad Documentation, Release 2.12

37.3 Creating measures

Create a measure with a time signature and music:

>>> measure = Measure((3, 8), "c’8 d’8 e’8"

>>> f (measure)
{
\time 3/8
c’8
d’s
e’8

>>> show (measure)

4]

= Se st

200 Chapter 37. Measures

CHAPTER
THIRTYEIGHT

38.1 Making notes from a string

You can make notes from string:

>>> note = Note("c’4")

>>> show (note)

=

NOTES

38.2 Making notes from chromatic pitch humber and duration

You can also make notes from chromatic pitch number and duration:

>>> note = Note (0, Duration(l, 4))

>>> show (note)

=

(You even use Note ("c’ 4") to create notes with numbers alone.)

38.3 Getting the written pitch of notes

You can get the written pitch of notes:

>>> note.written_pitch
NamedChromaticPitch ("c’")

38.4 Changing the written pitch of notes

And you can change the written pitch of notes:

>>> note.written_pitch = "cs’"

(Youcanuse note.written_pitch = 1 tochange pitch with numbers, too.)

201

Abjad Documentation, Release 2.12

38.5 Getting the duration attributes of notes

Get the written duration of notes like this:

>>> note.written_duration
Duration (1, 4)

Which is usually the same as preprolated duration:

>>> note.preprolated_duration
Duration (1, 4)

And prolated duration:

>>> note.duration
Duration (1, 4)

Except for notes inside a tuplet:

>>> tuplet = Tuplet (Fraction (2, 3), [Note("c’4"), Note("d’4"), Note("e’4")])

>>> show (tuplet)

i —3—

LE=ss

>>> note = tuplet[0]

Tupletted notes carry written duration:

>>> note.written_duration
Duration (1, 4)

Prolation:

>>> note.prolation
Multiplier (2, 3)

And prolated duration that is the product of the two:

>>> note.duration
Duration (1, 6)

38.6 Changing the written duration of notes

You can change the written duration of notes:
>>> tuplet[0] .written_duration = Duration(1l, 8)

>>> tuplet[l].written_duration = Duration(l, 8)
>>> tuplet[2] .written_duration = Duration(1l, 8)

>>> show (tuplet)

4]

=

Other duration attributes are read-only.

202 Chapter 38. Notes

Abjad Documentation, Release 2.12

38.7 Overriding notes

The notes below are black with fixed thickness and predetermined spacing:

>>> staff = Staff("c’'4 d’4 e’4 £74 g'4 a’4 g’'2")

>>> slur_1 = spannertools.SlurSpanner (staff[:2])
>>> slur_2 = spannertools.SlurSpanner (staff[2:4])
>>> slur_3 = spannertools.SlurSpanner (staff[4:6])

>>> f (staff)

\new Staff {
c’4 (
da’4)
e’d (
fr4)

(

)

’

N D

’

9
a’
g

>>> show (staff)

But you can override LilyPond grobs to change the look of notes, rests and chords:

>>> staff[-1].override.note_head.color = ’red’
>>> staff[-1].override.stem.color = ’'red’

>>> f (staff)
\new Staff {

a4)

\once \override NoteHead #’color = #red
\once \override Stem #’color = f#red

g’2

>>> show (staff)

38.8 Removing note overrides

Delete grob overrides you no longer want:

>>> del (staff[-1].override.stem)

>>> f (staff)
\new Staff {
14(

14

@
d’ 4
e’ 4
£fr4)
g’4
a4

\

once \override NoteHead #’color = #red

38.7. Overriding notes 203

Abjad Documentation, Release 2.12

g’'2
}

>>> show (staff)

0
T
U#;iuf*'

e

204 Chapter 38. Notes

CHAPTER
THIRTYNINE

PITCHES

Named chromatic pitches are the everyday pitches attached to notes and chords:

>>> note = Note("cs’’8")

>>> note.written_pitch
NamedChromaticPitch("cs’’")

39.1 Creating pitches

Use pitch tools to create named chromatic pitches:

>>> named_chromatic_pitch = pitchtools.NamedChromaticPitch("cs’’")

>>> named_chromatic_pitch
NamedChromaticPitch ("cs’’")

39.2 Inspecting the name of a pitch

Use str () to get the name of named chromatic pitches:

>>> str (named_chromatic_pitch)

"ogr M

39.3 Inspecting the octave of a pitch

Get the octave number of named chromatic pitches with octave_number:

>>> named_chromatic_pitch.octave_number
5

39.4 Working with pitch deviation

Use deviation to model the fact that two pitches differ by a fraction of a semitone:
>>> note_1 = Note (24, (1, 2))

>>> note_2 = Note (24, (1, 2))
>>> staff = Staff([note_1, note_2])

>>> show (staff)

205

Abjad Documentation, Release 2.12

5 =

P

(4 I v —
[,

>>> note_2.written_pitch = pitchtools.NamedChromaticPitch (24, deviation = -31)

The pitch of the the first note is greater than the pitch of the second:

>>> note_l.written_pitch > note_2.written_pitch
False

Use markup to include indications of pitch deviation in your score:

>>> markuptools.Markup (note_2.written_pitch.deviation_in_cents, Up) (note_2)
Markup (None, direction=Up) (c’’’2)

39.5 Sorting pitches

Named chromatic pitches sort by octave, diatonic pitch-class and accidental, in that order:

>>> pitchtools.NamedChromaticPitch(’es’) < pitchtools.NamedChromaticPitch(’ff’")
True

39.6 Comparing pitches

Compare named chromatic pitches to each other:

>>> named_chromatic_pitch_1 = pitchtools.NamedChromaticPitch("c’’")
>>> named_chromatic_pitch_2 = pitchtools.NamedChromaticPitch("d’’")
>>> named_chromatic_pitch_1 == named_chromatic_pitch_2

False

>>> named_chromatic_pitch_1 != named_chromatic_pitch_2

True

>>> named_chromatic_pitch 1 > named_chromatic_pitch_2
False

>>> named_chromatic_pitch_1 < named_chromatic_pitch_2
True

>>> named_chromatic_pitch_1 >= named_chromatic_pitch_2
False

>>> named_chromatic_pitch_1 <= named_chromatic_pitch_2
True

39.7 Converting one type of pitch to another

Convert any named chromatic pitch to a named diatonic pitch:

>>> named_chromatic_pitch.named_diatonic_pitch
NamedDiatonicPitch ("c’’")

To a numbered chromatic pitch:

>>> named_chromatic_pitch.numbered_chromatic_pitch
NumberedChromaticPitch (13)

206 Chapter 39. Pitches

Abjad Documentation, Release 2.12

Or to a numbered diatonic pitch:

>>> named_chromatic_pitch.numbered_diatonic_pitch
NumberedDiatonicPitch (7)

39.8 Converting pitches to pitch-classes

Convert any named chromatic pitch to a named chromatic pitch-class:

>>> named_chromatic_pitch.named chromatic_pitch_class
NamedChromaticPitchClass (’cs’)

To a named diatonic pitch-class:

>>> named_chromatic_pitch.named_diatonic_pitch_class
NamedDiatonicPitchClass ('c’)

To a numbered chromatic pitch-class:

>>> named_chromatic_pitch.numbered_chromatic_pitch_class
NumberedChromaticPitchClass (1)

Or to a numbered diatonic pitch-class:

>>> named_chromatic_pitch.numbered_diatonic_pitch_class
NumberedDiatonicPitchClass (0)

39.9 Copying pitches

Use copy . copy () to copy named chromatic pitches:

>>> import copy

>>> copy.copy (named_chromatic_pitch)
NamedChromaticPitch("cs’’")

Or use copy .deepcopy () to do the same thing.

39.10 Accidental abbreviations

Abjad abbreviates accidentals according to the LilyPond english. 1y module:

accidental name abbreviation
quarter sharp ‘qs’

quarter flat ‘qf’

sharp ‘s’

flat ‘f
three-quarters sharp | ‘tgs’
three-quarters flat ‘tqf”

double sharp ‘ss’

double flat “ff°

39.11 Chromatic pitch numbers

Abjad numbers chromatic pitches by semitone with middle C set equal to O:

39.8. Converting pitches to pitch-classes 207

Abjad Documentation, Release 2.12

The code to generate this table is as follows:

score, treble_staff, bass_staff = scoretools.make_empty_piano_score ()
duration = Fraction(l, 32)

treble = measuretools.AnonymousMeasure ([])
bass = measuretools.AnonymousMeasure ([])

treble_staff.append(treble)
bass_staff.append(bass)

pitches = range(-12, 12 + 1)
pitchtools.set_default_accidental_spelling(’ sharps’)

for i in pitches:
note = Note (i, duration)

rest = Rest (duration)
clef = pitchtools.suggest_clef for_named_chromatic_pitches ([note.pitch])
if clef == contexttools.ClefMark ('treble’) :

treble.append (note)

bass.append(rest)
else:

treble.append(rest)

bass.append (note)
diatonic_pitch_number = str(note.pitch.numbered_chromatic_pitch)
markuptools.Markup (diatonic_pitch_number, Down) (bass[-11])

score.override.rest.transparent = True
score.override.stem.stencil = False

39.12 Diatonic pitch numbers

Abjad numbers diatonic pitches by staff space with middle C set equal to 0:

e

Ho
L]

)
T
n
L

=+ = "7

-14 -13 -12 11 -0 9 8 7 6 5 4 3 -2 -1 0 1 2 3 4 5 & 7 B & 10 11 12 13 14

The code to generate this table is as follows:

score, treble_staff, bass_staff = scoretools.make_empty_piano_score ()
duration = Fraction(l, 32)

treble = measuretools.AnonymousMeasure ([])
bass = measuretools.AnonymousMeasure ([])

treble_staff.append(treble)
bass_staff.append(bass)

pitches = []
diatonic_pitches = [0, 2, 4, 5, 7, 9, 11]

pitches.extend([-24 + x for x in diatonic_pitches])
pitches.extend([-12 + x for x in diatonic_pitches])
pitches.extend ([0 + x for x in diatonic_pitches])

208 Chapter 39. Pitches

Abjad Documentation, Release 2.12

pitches.extend([12 + x for x in diatonic_pitches])
pitches.append(24)
pitchtools.set_default_accidental_spelling(’sharps’)

for i in pitches:
note = Note (i, duration)

rest = Rest (duration)
clef = pitchtools.suggest_clef_ for_ named_chromatic_pitches ([note.pitchl])
if clef == contexttools.ClefMark (’treble’):

treble.append (note)

bass.append (rest)
else:

treble.append(rest)

bass.append (note)
diatonic_pitch_number = abs (note.pitch.numbered_diatonic_pitch)
markuptools.Markup (diatonic_pitch_number, Down) (bass[-1])

score.override.rest.transparent = True
score.override.stem.stencil = False

39.13 Octave designation

Abjad designates octaves with both numbers and ticks:

Octave notation Tick notation
C7 e
Co ¢
C5 c
C4 c
C3 ¢
C
c

C2
Cl1

39.14 Accidental spelling

Abjad chooses between enharmonic spellings at pitch-initialization according to the following table:

Chromatic pitch-class number Chromatic pitch-class name (default)
C
C#
D
Eb
E
F
F#
G
Gb
A
Bb
11 B

OO Q| N K| W —O

—
(=)

>>> staff = Staff ([Note(n, (1, 8)) for n in range(12)])
>>> show (staff)

4] e e

Use pitch tools to respell with sharps:

39.13. Octave designation

209

Abjad Documentation, Release 2.12

>>> pitchtools.respell _named_chromatic_pitches_in_expr_with_sharps (staff)
>>> show (staff)

0 —— i

fopr s

Or flats:

>>> pitchtools.respell_named_chromatic_pitches_in_expr_with_flats (staff)
>>> show (staff)

n 1 1

210 Chapter 39. Pitches

CHAPTER
FORTY

WORKING WITH LISTS OF NUMBERS

Python provides a built-in 1ist class that you can use to carry around almost anything. The examples here show
how to create a list of numbers and then do things with the numbers in the list.

Create a list with square brackets.

>>> my_list = (23, 7, 10, 18, 13, 20, 3, 2, 18, 9, 14, 3]
>>> my_list
(23, 7, 10, 18, 13, 20, 3, 2, 18, 9, 14, 3]

Use len () to find the number of elements in any list.

>>> len(my_list)
12

Use append () to add one element to a list.

>>> my_list.append(5)
>>> my_list
[23, 7, 10, 18, 13, 20, 3, 2, 18, 9, 14, 3, 5]

Use extend () to extend one list with the contents of another.

>>> my_other_ list = [19, 11, 4, 10, 12]

>>> my_list.extend (my_other_list)

>>> my_list

23, 7, 10, 18, 13, 20, 3, 2, 18, 9, 14, 3, 5, 19, 11, 4, 10, 12]

Use reverse () to reverse the elements in a list.

>>> my_list.reverse()
>>> my_list
(12, 1o, 4, 11, 19, 5, 3, 14, 9, 18, 2, 3, 20, 13, 18, 10, 7, 23]

You can return a single value from a list with a numeric index.

>>> my_list[0]
12
>>> my_list[1]
10
>>> my_list[2]

You can return many values from a list with slice notation.

>>> my_list[:4]
[12, 10, 4, 11]

More information on these and all other operations defined on the built-in Python 11 st is available in the Python
tutorial.

211

http://docs.python.org/tutorial/introduction.html#lists
http://docs.python.org/tutorial/introduction.html#lists

Abjad Documentation, Release 2.12

212 Chapter 40. Working with lists of numbers

CHAPTER
FORTYONE

RESTS

41.1 Making rests from strings

You can make rests from a string:

>>> rest = Rest ('r8’)

>>> show (rest)

41.2 Making rests from durations

You can also make rests from a duration:

>>> rest = Rest (Duration(l, 4)

>>> show (rest)

(You can even use Rest ((1, 8)) to make rests from a duration pair.)

41.3 Getting the duration attributes of rests

Get the written duration of rests like this:

>>> rest.written_duration
Duration (1, 4)

Which is usually the same as preprolated duration:

>>> rest.preprolated_duration
Duration (1, 4)

And prolated duration:

>>> rest.duration
Duration (1, 4)

Except for rests inside a tuplet:

213

Abjad Documentation, Release 2.12

>>> tuplet = Tuplet (Fraction (2, 3), [Note("c’4"),

>>> show (tuplet)

A —3

>>> rest = tuplet([1]

Tupletted rests carry written duration:

>>> rest.written_duration
Duration (1, 4)

Prolation:

>>> rest.prolation
Multiplier (2, 3)

And prolated duration that is the product of the two:

>>> rest.duration
Duration (1, 6)

41.4 Changing the written duration of rests

You can change the written duration of notes and rests:
>>> tuplet[0] .written_duration = Duration(l, 8)

>>> tuplet[l].written_duration = Duration(l, 8)
>>> tuplet[2].written_duration = Duration(l, 8)

>>> show (tuplet)

—3=

G

Other duration attributes are read-only.

Rest ("r4d’"),

Note ("e”4") 1)

214

Chapter 41. Rests

CHAPTER
FORTYTWO

SCORES

42.1 Creating scores

Create a score like this:

14

>>> treble_staff 1 = Staff("e’4 d’4 e’'4 £74 g’1")
>>> treble_staff 2 = Staff("c’2. b8 a8 bl")
>>> score = Score([treble_staff_1, treble_staff_2])
>>> show (score)

:ﬂ I T

""H L] 1 o

[i)

[T) I 1

et I 1

¢ = g O

42.2 Inspecting score music

Return score components with music:

>>> score.music
(Staff{5}, Staff{4d})

42.3 Inspecting score length

Get score length with 1en () :

>>> len (score)
2

42.4 Inspecting score duration

Score contents duration is equal to the duration of the longest component in score:

>>> score.contents_duration
Duration (2, 1)

215

Abjad Documentation, Release 2.12

42.5 Adding one component to the bottom of a score

Add one component to the bottom of a score with append:

>>> bass_staff = Staff("g4 f4 e4 d4 di")
>>> contexttools.ClefMark ('bass’) (bass_staff)
ClefMark ('bass’) (Staff{5})

>>> score.append(bass_staff)

>>> show (score)

¢

lf"l'\ ':.' | _i

7

¢

42.6 Finding the index of a score component

Find the index of a score component with index:

>>> score.index (treble_staff_ 1)
0

42.7 Removing a score component by index

Use pop to remove a score component by index:

>>> score.pop (1)
Staff{4}

>>> show (score)

ﬁ'..: —1

| Fan TR V] |
d

¢

S

¢

42.8 Removing a score component by reference

Remove a score component by reference with remove:

>>> score.remove (treble_staff 1)

>>> show (score)

216 Chapter 42. Scores

Abjad Documentation, Release 2.12

De

!

42.9 Testing score containment

Use in to find out whether a score contains a given component:

>>> treble_staff 1 in score
False

>>> treble_staff 2 in score
False

>>> bass_staff in score
True

42.10 Naming scores

You can name Abjad scores:

>>> score.name = ’'Example Score’

Score names appear in LilyPond input:

>>> f (score)
\context Score = "Example Score" <<
\new Staff ({
\clef "bass"
g4
f4
ed
d4
dl

>>

But do not appear in notational output:

>>> show (score)

Felres

¢

42.9. Testing score containment 217

Abjad Documentation, Release 2.12

218 Chapter 42. Scores

CHAPTER
FORTYTHREE

SPANNERS

43.1 Overriding spanners

The symbols below are black with fixed thickness and predetermined spacing:

>>> staff = Staff("c’4 d’4 e’4 £'4 g’'4 a’4 g’'2")

>>> slur_1 = spannertools.SlurSpanner (staff[:2])
>>> slur_2 = spannertools.SlurSpanner (staff[2:4])
>>> slur_3 = spannertools.SlurSpanner (staff[4:6])

>>> f (staff)

\new Staff {
c’4 (

"4

Q.

Q 9 Q D
~
N B DD

’

>>> show (staff)

4] S T
i } I 1 I 1
Fal Fif} 1 I I 1 1
v d— N

—
But you can override LilyPond grobs to change the look of spanners:

>>> slur_1l.override.slur.color = ’'red’
>>> slur_3.override.slur.color = ’red’

>>> f (staff)
\new Staff {
\override Slur #’color = #red
c’4 (
d’4)
\revert Slur #’color
e’d (
fr4)
\override Slur #’color = #red
g4 (
a4)
\revert Slur #’color
g'2

>>> show (staff)

f N

o f T 1 I 1

(o€ o i —
—@B—"’—ﬂ j_—"j— a—

219

Abjad Documentation, Release 2.12

43.2 Overriding the components to which spanners attach

You can override LilyPond grobs to change spanners’ contents:

>>> slur_2.override.slur.color = "blue’
>>> slur_2.override.note_head.color = "blue’
>>> slur_2.override.stem.color = "blue’

>>> f (staff)

\new Staff {
\override Slur #’color = f#red
c’4 (
d’4)
\revert Slur #’color
\override NoteHead #’color = #blue
\override Slur #’color = #blue
\override Stem #’color = #blue
e’d (
fr4)
\revert NoteHead #’color
\revert Slur #’color
\revert Stem #’color
\override Slur #’color = #red
g'4 (
a’"d)
\revert Slur #’color
g’2

>>> show (staff)

f L

o f T 1 I

Fal il 1 I 1 1 =
—@B—""—ﬂ j_—,’j—"‘—'

—

43.3 Removing spanner overrides

Delete grob overrides you no longer want:

>>> del(slur_1.override.slur)
>>> del (slur_3.override.slur)

>>> f (staff)

\new Staff {
c'4 (
d’4)
\override NoteHead #’color = #blue
\override Slur #’color = #blue
\override Stem #’color = #blue
e’d4 (
£r4)
\revert NoteHead #’color
\revert Slur #’color
\revert Stem #’color
g'4 (
a’d)
g’2

>>> show (staff)

220

Chapter 43. Spanners

CHAPTER
FORTYFOUR

STAVES

44.1 Creating staves

Create staves like this:

>>> staff = Staff("c’8 d’8 e’8 £’8 g’8 a’8 b’4 c’''1")

>>> show (staff)

6 g

[, -+ 1

44.2 Inspecting staff music

Return staff components with music:

>>> staff.music
(Note ("c’8"), Note("d’8"), Note("e’8"), Note("f’8"), Note("g’8"), Note("a’8"), Note("b’4"), Note("c’'’1"))

44.3 Inspecting staff length

Get staff length with 1en () :

>>> len(staff)
8

44.4 Inspecting staff duration

Staff contents durations equals the sum of staff components’ duration:

>>> staff.contents_duration
Duration (2, 1)

44.5 Adding one component to the end of a staff

Add one component to the end of a staff with append:

>>> staff.append(Note("d""2"))

221

Abjad Documentation, Release 2.12

>>> show (staff)

¥ [
o J % i

44.6 Adding many components to the end of a staff

Add many components to the end of a staff with extend:
>>> notes = [Note("e’’8"), Note("d’’8"), Note("c’’4")]

>>> staff.extend(notes)

>>> show (staff)

9] —

— | F e
1 1 [W]
L |

1 |

[- | !

44.7 Finding the index of a staff component

Find staff component index with index:

>>> notes[0]
Note ("er r 8")

>>> staff.index (notes[0])
9

44.8 Removing a staff component by index

Use pop to remove a staff component by index:

>>> staff[8]
Note ("d’’2")

>>> staff.pop(8)
Note (“dl 4 2")

>>> show (staff)

ST et
| —| |
e/ - | 1

44.9 Removing a staff component by reference

Remove staff components by reference with remove:

>>> staff.remove (staff[-1])

>>> show (staff)

9 -] o .
L L)
1 | -
(Y] - | '
222 Chapter 44. Staves

Abjad Documentation, Release 2.12

44.10 Naming staves

You can name Abjad staves:

>>> staff.name = ’'Example Staff’

Staff names appear in LilyPond input:

>>> f (staff)
\context Staff = "Example Staff" {
c’8

% &
©

~

~
~N > 00 00 o

~

rrg
rrg

Q0O QO ®Q Hh O

}

But not in notational output:

>>> show (staff)

f i

A s [&) FP"_
f r—

[+ |

44.11 Forcing context

Staff context equals ' Staff’ by default:

>>> staff.context_name
"Staff’

You can force staff context:

>>> staff.context_name = ’'CustomUserStaff’

>>> staff.context_name
"CustomUserStaff’

>>> f (staff)
\context CustomUserStaff = "Example Staff" {
c’8
d’s
e’8
fr8
4

’

g9
a
bl
c
e

> o

Ill
118

dar’8
}

Force context when you have defined a new LilyPond context.

44.10. Naming staves

223

Abjad Documentation, Release 2.12

224 Chapter 44. Staves

CHAPTER
FORTYFIVE

TUPLETS

45.1 Making a tuplet from a LilyPond input string

You can make an Abjad tuplet from a multiplier and a LilyPond input string:

>>> tuplet = Tuplet (Fraction(2, 3), "c’8 d’8 e’8")

>>> show (tuplet)

45.2 Making a tuplet from a list of other Abjad components

You can also make a tuplet from a multiplier and a list of other Abjad components:

>>> leaves = [Note("fs’8"), Note("g’8"), Rest(’'r8’)]
>>> tuplet = Tuplet (Fraction(2, 3), leaves)

>>> show (tuplet)

g —is

45.3 Understanding the interpreter display of a tuplet

The interprer display of an Abjad tuplet contains three parts:

>>> tuplet
Tuplet (2/3, [fs’8, g’8, r8]

Tuplet tells you the tuplet’s class.
2/ 3 tells you the tuplet’s multiplier.

The list [fs’ 8, g’8, r8] shows the top-level components the tuplet contains.

45.4 Understanding the string representation of a tuplet

The string representation of a tuplet contains four parts:

225

Abjad Documentation, Release 2.12

>>> print tuplet
{x 3:2 £s'8, g’'8, r8 *}

Curly braces { and } indicate that the tuplet’s music is interpreted sequentially instead of in parallel.
The asterisks » denote a fixed-multiplier tuplet.
3: 2 tells you the tuplet’s ratio.

The remaining arguments show the top-level components of tuplet.

45.5 Inspecting the LilyPond format of a tuplet

Get the LilyPond input format of any Abjad object with format:

>>> tuplet.lilypond_format
"\\times 2/3 {\n\tfs’8\n\tg’8\n\tr8\n}"

Use £ () as a short-cut to print the LilyPond format of any Abjad object:
>>> f (tuplet)
\times 2/3 {

fs’8

g'8

r8

45.6 Inspecting the music in a tuplet

Get the music in any Abjad container with music:

>>> tuplet.music
(Note ("fs’8"), Note("g’8"), Rest(’'r8’))

Abjad returns a read-only tuple of components.

45.7 Inspecting a tuplet’s leaves

Get the leaves in any Abjad container with leaves:

>>> tuplet.leaves
(Note ("fs’8"), Note("g’8"), Rest(’'r8’))

Abjad returns a read-only tuple of leaves.

45.8 Getting the length of a tuplet

Get the length of any Abjad container with len ():

>>> len (tuplet)
3

The length of every Abjad container is defined equal to the number of top-level components present in the con-
tainer.

226 Chapter 45. Tuplets

Abjad Documentation, Release 2.12

45.9 Getting the duration attributes of a tuplet

You set the multiplier of a tuplet at initialization:

>>> tuplet.multiplier
Multiplier (2, 3)

The contents durations of a tuplet equals the sum of written durations of the components in the tuplet:

>>> tuplet.contents_duration
Duration (3, 8)

The multiplied duration of a tuplet equals the product of the tuplet’s multiplier and the tuplet’s contents duration:

>>> tuplet.multiplied_duration
Duration (1, 4)

45.10 Understanding rhythmic augmentation and diminution

A tuplet with a multiplier less than 1 constitutes a type of rhythmic diminution:

>>> tuplet.multiplier
Multiplier (2, 3)

>>> tuplet.is_diminution
True

A tuplet with a multiplier greater than 1 is a type of rhythmic augmentation:

>>> tuplet.is_augmentation
False

45.11 Understanding binary and nonbinary tuplets

A tuplet is considered binary if the numerator of the tuplet multiplier is an integer power of 2:

>>> tuplet.multiplier
Multiplier (2, 3)

>>> tuplet.has_power_of_two_denominator
True

Other tuplets are nonbinary:

>>> tuplet.has_non_power_of_two_denominator
False

45.12 Adding one component to the end of a tuplet

Add one component to the end of a tuplet with append:

>>> tuplet.append (Note ("e’4."))

>>> show (tuplet)

g —d—

G e

45.9. Getting the duration attributes of a tuplet 227

Abjad Documentation, Release 2.12

45.13 Adding many components to the end of a tuplet

Add many components to the end of a tuplet with extend:

>>> notes = [Note("fs’8"), Note("e’8"), Note("d’8"), Note("c’4.")]
>>> tuplet.extend (notes)

>>> show (tuplet)

45.14 Finding the index of a component in a tuplet

Find the index of a component in a tuplet with index () :

>>> notes[1]
Note ("e’8")

>>> tuplet.index (notes[1])
5

45.15 Removing a tuplet component by index

Use pop () to remove a tuplet component by index:

>>> tuplet[7]
Note ("c’4.")

>>> tuplet.pop (7)
Note ("c’4.")

>>> show (tuplet)

@

45.16 Removing a tuplet component by reference

Remove tuplet components by reference with remove () :

>>> tuplet.remove (tuplet [3]

>>> show (tuplet)

3 —
I=
-

45.17 Overriding attributes of the LilyPond tuplet number grob

Override attributes of the LilyPond tuplet number grob like this:

228 Chapter 45. Tuplets

Abjad Documentation, Release 2.12

>>> tuplet.override.tuplet_number.text = schemetools.Scheme (' tuplet-—number::calc-fraction-text’)
>>> tuplet.override.tuplet_number.color = ’red’

We’ll place the tuplet into a Staff object, so that LilyPond does not complain about the overrides we’ve applied,
which lexically cannot appear in a score block.

>>> staff = Staff ([tuplet])
>>> f (staff)
\new Staff {
\override TupletNumber #’'color = #red
\override TupletNumber #’text = #tuplet-number::calc-fraction-text
\times 2/3 {
fs’8
g’8
r8
fs’8
e’8
d’8
}
\revert TupletNumber #’color
\revert TupletNumber #’text

>>> show (staff)

—32—

See the LilyPond docs for lists of grob attributes available.

45.18 Overriding attributes of the LilyPond tuplet bracket grob

Override attributes of the LilyPond tuplet bracket grob like this:

>>> tuplet.override.tuplet_bracket.color = ’"red’

>>> f (staff)
\new Staff {
\override TupletBracket #’color = #red
\override TupletNumber #’'color = #red
\override TupletNumber #’text = #tuplet-number::calc-fraction-text
\times 2/3 {
fs’8
g’8
r8
fs’8
e’8
d’s
}
\revert TupletBracket #’color
\revert TupletNumber #’color
\revert TupletNumber #’text

>>> show (staff)

—2 ——

AL

See the LilyPond docs for lists of grob attributes available.

45.18. Overriding attributes of the LilyPond tuplet bracket grob 229

Abjad Documentation, Release 2.12

230 Chapter 45. Tuplets

CHAPTER
FORTYSIX

VOICES

46.1 Making a voice from a LilyPond input string

You can make an Abjad voice from a LilyPond input string:

>>> voice = Voice("c’8 d’8 e’8 £'8 g’8 a’8 b’4 c’'’1")

>>> show (voice)

4] g

[, -+ 1

46.2 Making a voice from a list of other Abjad components

You can also make a voice from a list of other Abjad components:

>>> components = [Tuplet (Fraction(2, 3), "c’4 d’4 e’4"), Note("f’2"), Note("g’1")]
>>> voice = Voice (components)

>>> show (voice)

¢

46.3 Understanding the repr of a voice

The repr of an Abjad voice contains three parts:

>>> voice
Voice{3}

Voice tells you the voice’s class.
3 tells you the voice’s length (which is the number of top-level components the voice contains).

Curly braces { and } tell you that the music inside the voice is interpreted sequentially rather than in parallel.

46.4 Inspecting the LilyPond format of a voice

Get the LilyPond input format of any Abjad object with format:

231

Abjad Documentation, Release 2.12

>>> voice.lilypond_format
"\\new Voice {\n\t\\times 2/3 {\n\t\tc’4\n\t\td’4\n\t\te’4\n\t}\n\tf’2\n\tg’1\n}"

Use £ () as a short-cut to print the LilyPond format of any Abjad object:

>>> f (voice)

\new Voice {
\times 2/3 {

c’4

d’4

e’ 4

Q o~
g
=N

46.5 Inspecting the music in a voice

Get voice components with music:

>>> voice.music
(Tuplet (2/3, [c’"4, d’4, e’4]), Note("f’2"), Note("g’'1l"))

Abjad returns a read-only tuple of components.

46.6 Inspecting a voice’s leaves

Get the leaves in a voice with leaves:

>>> voice.leaves
(Note ("c’4"), Note("d’4"), Note("e’4"), Note("f’2"), Note("g’'1l"))

Abjad returns a read-only tuple of leaves.

46.7 Getting the length of a voice

Get voice length with 1len ():

>>> len (voice)
3

The length of a voice is defined equal to the number of top-level components the voice contains.

46.8 Getting the duration attributes of a voice

The contents durations of a voice equals the sum of durations of the components in the voice:

>>> voice.contents_duration
Duration (2, 1)

The preprolated duration of a voice is usually equal to the voice’s contents duration:

>>> voice.preprolated_duration
Duration (2, 1)

The prolated duration of a voice is usually equal to the voice’s contents duration, too:

232 Chapter 46. Voices

Abjad Documentation, Release 2.12

>>> voice.preprolated_duration
Duration (2, 1)

Only when you nest a very small voice inside a tuplet will the prolated and preprolated duration of a voice differ.
Voices that are not nested inside a tuplet carry a prolation of 1:

>>> voice.prolation
Fraction (1, 1)

All voice duration attributes are read-only.

46.9 Adding one component to the end of a voice

Add one component to the end of a voice with append:

>>> voice.append (Note ("af’2"))

>>> show (voice)

9
==
yiis

46.10 Adding many components to the end of a voice

Add many components to the end of a voice with extend:

>>> notes = [Note("g’4"), Note("f’4")]
>>> voice.extend (notes)

>>> show (voice)

;
|
|
o —

¢
==
viis

46.11 Finding the index of a component in a voice

Find the index of a component in a voice with index () :

>>> notes[0]
Note ("g’4m)

>>> voice.index (notes[0])
4

46.12 Removing a voice component by index

Use pop () to remove a voice component by index:

>>> voice[5]
Note ("f74")

>>> voice.pop (5)
Note ("£74")

46.9. Adding one component to the end of a voice 233

Abjad Documentation, Release 2.12

>>> show (voice)

) —3 .
o + |l
(o — 17—
oL
| o e

46.13 Removing a voice component by reference

Remove voice components by reference with remove () :

>>> voice.remove (voice[-1])

>>> show (voice)

9
==
s

46.14 Naming voices

You can name Abjad voices:

>>> voice.name = ’'Upper Voice’

Voice names appear in LilyPond input:

>>> f (voice)
\context Voice = "Upper Voice" {
\times 2/3 ¢{
c’4
d’ 4
e’4

}

But not in notational output:

>>> show (voice)

¢
==
N

46.15 Changing the context of a voice

The context of a voice is set to ' Voice’ by default:

>>> voice.context_name
"Voice’

But you can change the context of a voice if you want:

>>> voice.context_name = ’SpeciallyDefinedVoice’

>>> voice.context_name
"SpeciallyDefinedVoice’

234

Chapter 46. Voices

Abjad Documentation, Release 2.12

>>> f (voice)
\context SpeciallyDefinedVoice = "Upper Voice" {

\times 2/3 {
c’4
d’4
e’ 4

}
Change the context of a voice when you have defined a new LilyPond context based on a LilyPond voice.

235

46.15. Changing the context of a voice

Abjad Documentation, Release 2.12

236 Chapter 46. Voices

Part VI

Developer documentation

237

CHAPTER
FORTYSEVEN

CODEBASE

47.1 How the Abjad codebase is laid out

The Abjad codebase comprises a small number of top-level directories:

abjad$ 1s -x -F --width 80
ls: illegal option —-- -
usage: ls [-ABCFGHLOPRSTUWabcdefghiklmnopgrstuwxl] [file ...]

Of these, is is in the t ool s directory that the bulk of the musical reasoning implemented in Abjad resides:

abjadS 1ls tools/ -x -F --width 80
tools/:

__init_ .py
__init__ .pyc
abctools
abjadbooktools
beamtools
chordtools
componenttools
configurationtools
containertools
contexttools
datastructuretools
decoratortools
developerscripttools
documentationtools
durationtools
exceptiontools
formattools
gracetools
importtools
instrumenttools
introspectiontools
iotools
iterationtools
labeltools
layouttools
leaftools
lilypondfiletools
lilypondparsertools
lilypondproxytools
marktools
markuptools
mathtools
measuretools
notetools
offsettools
pitcharraytools
pitchtools
quantizationtools
resttools
rhythmmakertools
rhythmtreetools
schemetools

239

Abjad Documentation, Release 2.12

scoretemplatetools

scoretools

selectiontools

sequencetools

sievetools

skiptools

spannertools

stafftools

stringtools

tempotools

testtools

tietools

timeintervaltools
timerelationtools
timesignaturetools

timespantools

tonalitytools

tuplettools

verticalitytools

voicetools

wellformednesstools

ls: —--width: No such file or directory
ls: -F: No such file or directory
ls: —-x: No such file or directory
ls: 80: No such file or directory

The remaining sections of this chapter cover the topics necessary to familiarize developers coming to the project
for the first time.

47.2 Removing prebuilt versions of Abjad before you check out

If you’d like to be at the cutting edge of the Abjad development then you should check out from Google Code and
tell Python and your operating system about Abjad. You can do this by following the steps below.

But before you do this you should realize that there are two ways to get Abjad up and running on your computer.
The first way is by downloading a compressed version of Abjad from the Python Package Index. You probably
did this when you first discovered Abjad and started to use the system. The second way is by following the steps
below to check out a copy of the most recent version of the Abjad repository hosted on Google Code. If you
already have a version of Abjad running on your computer but you haven’t yet followed the steps below to check
out from Google Code, then you probably downloaded a compressed version of Abjad from the Python Package
Index.

Before you check out from Google Code you should remove all prebuilt versions of Abjad from your ma-
chine.

The reason you need to do this is that having both a prebuilt version of Abjad and a Subversion-managed version
of Abjad on your machine can confuse your operating system and lead to weird results when you try to start Abjad.

You remove prebuilt versions of Abjad resident on your computer by finding your site packages directory and
removing the so-called Abjad ‘egg’ that Python has installed there. After you remove the Abjad egg from
your site packages directory you will also need to remove the abj, abjad and abjad-book scripts from
/usr/local/bin or from the directory that is equivalent to /usr/local/bin under your opearting system.

First note the version of Python you’re currently running:

abjads python --version
Python 2.7.3

This is important because you may have more than one version of Python installed on your machine. (Which tends
especially to be the case if you’re running a Apple’s OS X.)

Then note that the site packages directory is a part of your filesystem into which Python installs third-party Python
packages like Abjad. The location of the site packages directory varies from one operating system to the next
and you may have to Google to find the exact location of the site packages directory on your machine. Under OS

240 Chapter 47. Codebase

http://pypi.python.org/pypi/Abjad/

Abjad Documentation, Release 2.12

X you can check /Library/Python/2.x/site-packages/. Under Linux the site packages directory is
usually /usr/lib/python2.x/site-packages.

Once you’ve found your site packages directory you can list its contents to see if Python has installed an Abjad
egg in it:

site-packages$ 1ls

Abjad-2.0-py2.6.egg Sphinx-1.0.7-py2.6.egg py-1.3.4-py2.6.egg
Jinja2-2.5-py2.6.egg docutils-0.7-py2.6.egg py-1.4.0-py2.6.egg
Pygments-1.3.1-py2.6.egg easy-install.pth py-1.4.4-py2.6.egg
README guppy pytest-2.0.0-py2.6.egg
Sphinx-1.0.1-py2.6.egg guppy-0.1.9-py2.6.egg-info pytest-2.1.0-py2.6.egg
Sphinx-1.0.4-py2.6.egg py-1.3.1-py2.6.egg

Remove any Abjad eggs Python has installed in your site packages directory.

After you’ve done this you should check /usr/local/bin or equivalent to see if the abj, abjad or
abjad-book scripts are installed there:

bin$ 1s
abj abjad abjad-book

Remove any of the three scripts you find installed there so that you can use the new versions of the scripts you
will download from Google Code instead:

bin$ sudo rm abjx

Now proceed to the steps below to check out from Google Code.

47.3 Installing the development version

Follow the steps listed above to remove prebuilt versions of Abjad from your machine. Then follow the steps
below to check out from Google Code.

1. Make sure Subversion is installed on your machine:

svn —-version

If Subversion responds then it is already installed. Otherwise visit the Subversion website.
2. Check out a copy of the main line of the Abjad codebase:

svn checkout http://abjad.googlecode.com/svn/abjad/trunk abjad-trunk
3. Add the abjad trunk directory to your your PYTHONPATH environment variable:
export PYTHONPATH="/path/to/abjad-trunk:"S$SPYTHONPATH
4. Alternatively you may symlink your Python site packages directory to the abjad trunk directory:

In -s /path/to/abjad-trunk /path/to/site-package/abjad

5. Finally, add abjad-trunk/scr/ to your PATH environment variable:

export P ="/path/to/abjad-trunk/scr:"$PAT

You will then be able to run Abjad with the ab jad command.

You now have a copy of the main line of the most recent version of the Abjad repository checked out to your
machine.

47.3. Installing the development version 241

http://subversion.tigris.org

Abjad Documentation, Release 2.12

242 Chapter 47. Codebase

CHAPTER
FORTYEIGHT

DOCS

The reST-based sources for the Abjad documentation are included in their entirety in every installation of Abjad.
You may add to and edit these reST-based sources as soon as you install Abjad. However, to build human-readable
HTML or PDF versions of the docs you will first need to download and install Sphinx.

The remaining sections of this chapter describe how the Abjad docs are laid out and how to build the docs with
Sphinx.

48.1 How the Abjad docs are laid out

The source files for the Abjad docs are included in the docs directory of every Abjad install. The docs directory
contains everything required to build HTML, PDF and other versions of the Abjad docs.

abjads$ 1ls docs/
Makefile _templates chapters index.rst scr
_static _themes conf.py make.bat

The bulk of the Abjad docs live in docs/chapters. The chapter directories mirror the main sections on Abjad
documentation. What you’ll find as you inspect the chapter directories are a collection of . rst files organized
into groups. The . rst extension identifies files written in restructured text.

One example:

abjad$ 1ls docs/chapters/appendices/glossary
index.rst

48.2 Installing Sphinx

Sphinx is the automated documentation system used by Python, Abjad and other projects implemented in Python.
Because Sphinx is not included in the Python standard library you will probably need to download and install it.

First check to see if Sphinx is already installed on your machine.

$ sphinx-build --version

If Sphinx responds then the program is already installed on your machine. Otherwise visit the Sphinx website.

48.3 Removing old builds of the docs

After installing Sphinx, change to the Abjad docs directory and use the Sphinx makefile to remove any existing
docs/_build directory prior to making a new build of the docs.

243

http://sphinx.pocoo.org/examples.html
http://sphinx.pocoo.org/

Abjad Documentation, Release 2.12

abjad$ cd docs

docs$ make clean
rm -rf _build/=*

48.4 Generating the Abjad API

The docs/scr directory includes a script to generate the Abjad API. Run this script before building the Abjad
docs for the first time.

docs$ scr/make—abjad-api
Building TOC tree
Now making Sphinx TOC

Done.

Now building the HTML docs

sphinx-build -b html -d _build/doctrees . _build/html
Running Sphinx v1.0.7
loading pickled environment... done

(many lines omitted)
Build finished. The HTML pages are in _build/html.

Rerun make-abjad-api any time you add or remove a public class, method or function from the codebase.

48.5 Building the HTML docs

Change to the Abjad docs directory and run make html.

abjad$ cd docs

docs$ make html

sphinx-build -b html -d _build/doctrees . _build/html
Running Sphinx v1.0.7
loading pickled environment... not found

building [html]: targets for 568 source files that are out of date
updating environment: 568 added, 0 changed, 0 removed

reading sources... [13%] chapters/api/debug/debugghandlertoregatorsg

reading sources... [37%] chapters/api/tools/clonewp/by_leaf_ counts_with_parenta
reading sources... [38%] chapters/api/tools/clonewp/by_leaf range_with_parentag
reading sources... [38%] chapters/api/tools/componenttools/get_duration_crosser
reading sources... [38%] chapters/api/tools/componenttools/get_duration_preprol
reading sources... [39%] chapters/api/tools/componenttools/get_le_duration_prol

(many more lines omitted)

writing output... [85%] chapters/api/tools/spannertools/give_attached_to_childr
writing output... [95%] chapters/fundamentals/duration/interfaces_compared/inde
writing output... [100%] index /indexdexexexng/indexxdexindex
writing additional files... genindex modindex search

copying images... done

copying static files... done

dumping search index... done

dumping object inventory... done

build succeeded.

244 Chapter 48. Docs

Abjad Documentation, Release 2.12

Build finished. The HTML pages are in _build/html.

You will then find the complete HTML version of the docs in docs/_build/html.

docs$ 1ls _build/
doctrees html

The output from Sphinx is verbose the first time you build the docs. On sequent builds, Sphinx reports changes
only.

docs$ make html

sphinx-build -b html -d _build/doctrees . _build/html
Running Sphinx v1.0.7
loading pickled environment... done

building [html]: targets for 1 source files that are out of date
updating environment: 0 added, 1 changed, 0 removed

reading sources... [100%] chapters/devel/documentation/index
looking for now-outdated files... none found

pickling environment... done

checking consistency... done

preparing documents... done

writing output... [100%] index ation/index
writing additional files... genindex modindex search

copying static files... done

dumping search index... done

dumping object inventory... done

build succeeded.

Build finished. The HTML pages are in _build/html.

48.6 Building a PDF of the docs

Building a PDF of the docs is a two-step process. First you build a LaTeX version of the docs. Then you typeset
the LaTeX docs as a PDF.

First change to the Abjad docs directory.

abjad$ docs

Then make LaTeX sources of the docs.

docs$ make latex

sphinx-build -b latex -d _build/doctrees . _build/latex
Running Sphinx v1.0.7
loading pickled environment... done

building [latex]: all documents

updating environment: 0 added, 0 changed, 0 removed

looking for now-outdated files... none found

processing Abjad.tex... index chapters/start_here/abjad/index chapters/examples/bartok...

(... many lines omitted ...)
...ndices/pitch_conventions/images/example-3.png chapters/examples/ligeti/images/desordre. jpg
copying TeX support files... done

build succeeded.

Build finished; the LaTeX files are in _build/latex.
Run "make all-pdf' or "make all-ps' in that directory to run these through (pdf)latex.

Now follow the instructions provided by Sphinx and change to the LaTeX build directory.

48.6. Building a PDF of the docs 245

Abjad Documentation, Release 2.12

docs$ cd _build/latex/

Then make a PDF version of the docs from the LaTeX sources.

latex$ make all-pdf

pdflatex 'Abjad.tex'
This is pdfTeXk, Version 3.141592-1.40.3 (Web2C 7.5.6)
%&—line parsing enabled.
entering extended mode
(./Abjad.tex
LaTeX2e <2005/12/01>
Babel <v3.8h> and hyphenation patterns for english, usenglishmax, dumylang, noh
yphenation, arabic, basque, bulgarian, coptic, welsh, czech, slovak, german, ng
erman, danish, esperanto, spanish, catalan, galician, estonian, farsi, finnish,

(... many lines omitted ...)

The resulting docs will appear as Abjad.pdf in the LaTeX build directory you’re currently in.

48.7 Building a coverage report

Change to the Abjad docs directory and call sphinx—-build explicitly with the coverage builder, source di-
rectory and target directory.

docs$ sphinx-build -b coverage . _build/coverage
Making output directory...
Running Sphinx v1.0.7

loading pickled environment... not found

building [coverage]: coverage overview

updating environment: 568 added, 0 changed, 0 removed

reading sources... [37%] chapters/api/tools/clonewp/by_leaf counts_with_parenta
reading sources... [38%] chapters/api/tools/clonewp/by_leaf range_with_parentag
reading sources... [38%] chapters/api/tools/componenttools/get_duration_crosser

(many lines omitted)

reading sources... [85%] chapters/api/tools/spannertools/withdraw_from containe
reading sources... [95%] chapters/fundamentals/duration/interfaces_compared/ind
reading sources... [100%] index t/indexdexexexng/indexxdexindex
looking for now-outdated files... none found

pickling environment... done

checking consistency... done

build succeeded.

The coverage report is now available in the docs/_build/coverage directory.

docs$ 1s _build/
coverage doctrees html

48.8 Building other versions of the docs

Examine the Sphinx makefile in the Abjad docs/ directory or change to the docs/ directory and type make
with no arguments to see a list of the other versions of the Abjad docs that are available to build.

docs$ make
Please use “make <target>' where <target> is one of
html to make standalone HTML files
dirhtml to make HTML files named index.html in directories

246 Chapter 48. Docs

Abjad Documentation, Release 2.12

pickle to make pickle files

json to make JSON files

htmlhelp to make HTML files and a HTML help project

gthelp to make HTML files and a gthelp project

latex to make LaTeX files, you can set PAPER=a4 or PAPER=letter

changes to make an overview of all changed/added/deprecated items
linkcheck to check all external links for integrity
doctest to run all doctests embedded in the documentation (if enabled)

48.9 Inserting images with abjad-book

Use abjad-book to insert snippets of notation in the docs you write in reST.

Embed Abjad code between open and close <abjad> </abjad> tags in your . rst.raw sourcefile and then call
abjad-book to create a pure . rst file.

abjad-book foo.rst.raw foo.rst

Parsing file
Rendering "example-1.1ly"
Rendering "example-2.1ly"

You will need to build the HTML docs again to see your work.

make html

48.10 Updating Sphinx

It is important periodically to update your version of Sphinx. If you used easy_install to install Sphinx then
the usual command to update Sphinx is this:

$ sudo easy_install -U Sphinx

This will usually work. But if Sphinx fails to update then it may be because you have multiple versions of Python
installed on your computer. (This tends especially to be the case under Apple’s OS X.)

To get around this first note the version of Python you’re currently running:

$ python —--version
Python 2.6.1

Then use a version-explicit form of easy_install to update Sphinx:

$ sudo easy_install-2.6 -U Sphinx

48.9. Inserting images with abjad-book 247

Abjad Documentation, Release 2.12

248 Chapter 48. Docs

CHAPTER
FORTYNINE

TESTS

Abjad includes an extensive battery of tests. Abjad is in a state of rapid development and extension. Major
refactoring efforts are common every six to eight months and are likely to remain so for several years. And yet
Abjad continues to allow the creation of complex pieces of fully notated score in the midst of these changes.
We believe this is due to the extensive coverage provided by the automated regression battery described in the
following sections.

49.1 Automated regression?

A battery is any collection of tests. Regression tests differ from other types of test in that they are designed to be
run again and again during many different stages of the development process. Regression tests help ensure that
the system continues to function correctly as developers make changes to it. An automated regression battery is
one that can be run automatically by some sort of driver with minimal manual intervention.

Several different test drivers are now in use in the Python community. Abjad uses py.test. The py . test distri-
bution is not included in the Python standard library, so one of the first thing new contributors to Abjad should do
is download and install py . test, and then run the existing battery.

49.2 Running the battery

Change to the directory where you have Abjad installed. Then run py . test.

abjad$ py.test

= == == = test session starts == ====

platform darwin -- Python 2.6.1 —-- pytest-2.1.0
collected 4235 items

core/LilyPondContextProxy/test/test_LilypondContextProxy. eq__.py
core/LilyPondContextProxy/test/test_LilypondContextProxy. repr__.py
core/LilyPondContextProxy/test/test_LilypondContextProxy setattr__ .py

(many lines omitted)
tools/voicetools/test/test_voicetools_iterate_semantic_voices_in_expr.py

tools/voicetools/test/test_voicetools_iterate_voices_backward_in_expr.py
tools/voicetools/test/test_voicetools_iterate_voices_in_expr.py

4235 passed in 127.06 seconds

Abjad r4629 includes 4235 tests.

249

http://codespeak.net/py/dist/test/test.html

Abjad Documentation, Release 2.12

49.3 Reading test output

py.test crawls the entire directory structure from which you call it, running tests in alphabetical order.
py.test prints the total number of tests per file in square brackets and prints test results as a single . dot
for success or else an F for failure.

49.4 Writing tests

Project check-in standards ask that tests accompany all code committed to the Abjad repository. If you add a new
function, class or method to Abjad, you should add a new test file for that function, class or method. If you fix or
extend an existing function, class or method, you should find the existing test file that covers that code and then
either add a completely new test to the test file or else update an existing test already present in the test file.

49.5 Test files start with test

When py . test first starts up it crawls the entire directory structure from which you call it prior to running a
single test. As py.test executes this preflight work, it looks for any files beginning or ending with the string
test and then collects and alphabetizes these. Only after making such a catalog of tests does py . test begin
execution. This collect-and-cache behavior leads to the important point about naming, below.

49.6 Avoiding name conflicts

Note that the names of test functions must be absolutely unique across the entire directory structure on which
you call py.test. You must never share names between test functions. For example, you must not have two
tests named test_grob_handling_01 () even if both tests live in different test files. That is, a test named
test_grob_handling_01 () living in the file test_accidental_grob_handling.py and a second
test named test_grob_handling_01 () living in the file test_notehead_grob_handling.py will
conflict with the each other when py.test runs. And, unfortunately, ‘‘py.test is silent about such conflicts
when it runs. That is, should you run py . test with the duplicate naming situation described here, what will hap-
penis that py . test will correctly run and report results for the first such test it finds. However, when py . test
encounters the second like-named test, py . test will incorrectly report cached results for the first test rather than
the second. The take-away is to include some sort of namespacing indicators in every test name and not to be afraid
of long test names. The test_grob_handling_01 () example given here fixes easily when the two tests re-
name to test_accidental_grob_handling_01 () and test_notehead_grob_handling_01 ().

49.7 Updating py.test

It is important periodically to update py . test.
The usual command to do this is:

$ sudo easy_install -U pytest

Note that pytest is here spelled without the intervening period.

49.8 Running doctest on the tools directory

The Python standard library includes the doctest module as way of checking the correctness of examples
included in Python docstrings. The module searches for instances of the Python interpreter prompt ’ >>>’ and
executes any code that follows. Abjad docs display the Abjad prompt ' abjad>" instead of the Python prompt.

250 Chapter 49. Tests

Abjad Documentation, Release 2.12

This means that all instances of the Abjad prompt must be changed to Python prompts before running doctest
on the Abjad codebase. Three scripts in abjad/scr/devel help do this.

First change to the subdirectory of the Abjad source tree on which you’d like to run doctest. Then run these
scripts:

replace-abjad-prompts-with-python-prompts
run-doctest-on-all-modules—-in-tree
replace-python-prompts-with-abjad-prompts

After running run—-doctest-on-all-modules—in-tree you can inspect the results that come back from
doctest and make any fixes as required.

49.8. Running doctest on the tools directory 251

Abjad Documentation, Release 2.12

252 Chapter 49. Tests

CHAPTER
FIFTY

SCRIPTS

The abjad/scr/devel directory contains scripts for Abjad developers. Add abjad/scr/devel to your
PATH to use the scripts described below.

abjads$ 1ls scr/devel

abj-grep find-multifunction-modules

abj-grp find-multiline-import-statements
abj-rmpycs find-nonalphabetized-module-headers
abj-src-grp find-nontrivial-subdirectories
abj-test-grp find-public-helpers-without-docstrings
abj-update find-undocumented-tools
capitalize-test-file-names fix-nonalphabetized-module-headers
conjoin-multiline-import-statements fix-test-case-block-comments
count-source-lines fix-test-case—names

count-tools fix-test-case-numbers

duplicate-test-file format-lilypond-context-names-with-underscores
find-and-fix-manual-class-package—-initializers list-private-modules
find-duplicate-module—-names rebuild-docs
find-duplicate-tool-module-names reindent-3-spaces-as-4
find-import-as—-statements reindent-4-spaces—-as-3
find-local-import-statements reindent-spaces-variably
find-lower—-camel-case-definitions remove—-tmp-out—-directories
find-lower—-camel-case-modules rename-public-helper
find-manual-class-loads—-in-initializers replace-abjad-prompts-with-python-prompts
find-misnamed-private-modules replace-in-files
find-missing-test-modules replace-python-prompts-with-abjad-promnpts
find-module-headers run-doctest-on-all-modules—-in-tree

find-modules-with-chevrons

50.1 Searching the Abjad codebase with abj-grep

Abjad provides a wrapper around UNIX grep in the form of abj—grep. Use this script to recursively search
the entire Abjad codebase, leaving out non-human-readable files, files located in special . svn Subversion subdi-
rectories, and all files in the abjad/documentat ion directories. You can run abj—grep from any directory
on your system; you needn’t be in the Abjad source directories when you call abj—-grep.

$ abj-grep 'is_assignable ('

leaf/duration.py:111: if not durationtools.is_assignable (rational) :
tempo/indication.py:67: assert durationtools.is_assignable (arqg)
tools/check/are_scalable.py:12: if not durationtools.is_assignable (candidate_duration)

tools/durationtools/is_assignable.py:5:def is_assignable (duration) :
tools/durationtools/prolated_to_written.py:2:from abjad.tools.durationtools.is_assignable import

tools/durationtools/prolated_to_written.py:15: if is_assignable (prolated_duration) :
tools/tietools/duration_change.py:28: if durationtools.is_assignable (new_written_duration) :
tools/tuplettools/contents_scale.py:30: if durationtools.is_assignable (multiplier) :

253

Abjad Documentation, Release 2.12

50.2 Removing old . pyc files with abj-rmpycs

See the section on abj—update below for the reasons that it is a good idea to periodically remove the byte-
compiled « . pyc files that Python generates for its own use behind the scenes. Abjad supplies abj-rmpycs to
delete all the » . pyc in the Abjad codebase, leaving other » . pyc on your system untouched.

50.3 Updating your development copy of Abjad with abj-update

The normal way of updating your working copy of a Subversion repository is with the svn update or svn
up command. You can update your working copy of Abjad in the usual way with svn up. But Abjad supplies
an abj-update script as a wrapper around the usual Subversion update commands. In addition to updating
your working copy of Abjad, abj-update populates the abjad/.version file with the most recent revision
number of the system, and then removes all x . pyc files from your Abjad install. The benefits here are twofold.
First, Abjad adds the most recent revision number of the system to all . 1y files that you generate when working
with Abjad. If you do not update the Abjad version file on a regular basis, the headers in your Abjad-generated
. 1y files will list the wrong version of the system. Second, as is the case in working with any substantial Python
codebase, it is a good idea to periodically remove the byte-compiled « . pyc files that Python creates for its own
use. The reason for this is inadvertant name aliasing. That is, if there was previously a module named foo.py
somewhere in the system and if Python had at some point imported the module and created foo.pyc as a
byprodct, this . pyc file will remain on the filesystem even if you later decide to remove, or rename, the source
foo.py module. This lead to confusion because days or weeks after foo . py has been removed, Python will
still find foo.pyc and seem to make the contents of foo . py available from beyond the grave. Updating with
abj—-update takes care of these two situations.

50.4 Counting lines of code with count-source-lines

Run count-source-1lines for a count of lines of count divided between source and test files.

abjad$ count-source-lines

source_modules: 1703

test_modules: 1812
source_lines: 73942
test_lines: 76636

total lines: 150578
test-to-source ratio is 1 : 1

The script is directory-dependent so you can run it any the entire Abjad codebase or any subdirectory of the
codebase.

50.5 Global search-and-replace with replace-in-files

You probably won’t need to use replace-in-files very often. But if you are making changes to Abjad that
will cause some name, such as FooBar, to be globally changed everywhere in the Abjad codebase to, say to
foo_bar, then you can use replace-in-files to save lots of time.

$ replace-in-files —--help
Usage:
replace-in-files DIR OLD_TEXT NEW_TEXT [CONFIRM=true/false]

Crawl directory DIR and read every file in it recursively.

254 Chapter 50. Scripts

Abjad Documentation, Release 2.12

Replace OLD_TEXT with NEW_TEXT in each file.

Set CONFIRM to "false' to replace without prompting.

50.6 Adding new development scripts

If you write and then find yourself using a certain script over and over again when you’re developing new code for
Abjad, consider contributing back to the project so we can include your script in the next public release of Abjad.
Scripts in the the Abjad script directories end with no file extension and try to be as OS-portable as possible,
which usually means writing the script in Python, rather than your operating system’s shell, and relying heavily
on Python’s os module.

50.6. Adding new development scripts 255

Abjad Documentation, Release 2.12

256 Chapter 50. Scripts

CHAPTER
FIFTYONE

USING ABJAD-BOOK

abjad-book is an independent application included in every installation of Abjad. abjad-book allows you
to write Abjad code in the middle of documents written in HTML, LaTeX or ReST. We created abjad-book
to help us document Abjad. Our work on abjad-book was inspired by 1ilypond-book, which does for
LilyPond much what ab jad-book does for Abjad.

abjad-book can be accessed on the commandline either via abjad-book or through Abjad’s ajv tool col-
lection. For the most up-to-date documentation on ab jad-book, always consult ajv book —--help:

abjad$ ajv book --help
usage: abjad-book [-h] [--version] [--skip-rendering] [--verbose] [-X] [-M]
path
Preprocess HTML, LaTeX or ReST source with Abjad.
positional arguments:
path the path to process: a filename ending in ".raw" or an

arbitrarily-deep directory tree to be recursed over

optional arguments:

-h, --help show this help message and exit
—-version show program’s version number and exit
skip-rendering skip all image rendering and simply execute the code
—--verbose run in verbose mode, printing all LilyPond output
-X, ——experimental rebuild abjad.tools docs after processing
-M, —--mainline rebuild mainline docs after processing
DESCRIPTION

abjad-book processes Abjad snippets embedded in HTML, LaTeX, or ReST
documents. All Abjad code placed between the <abjad> </abjad> tags in either
HTML, LaTeX or ReST type documents is executed and replaced with tags
appropriate to the given file type. All output generated by the code snippet
is captured and inserted in the output file.

Apart from the special opening and closing Abjad tags, abjad-book also
has a special line-level suffix tag: “<hide’. All lines ending with the
"<hide’ tag will be interpreted by Abjad but will not be displayed in the
OUTPUT document.

The opening <abjad> tag can also be followed by a list of “attribute=value’
pair.

You can make all of an Abjad code block invisible in the output file with
the following opening tag:

<abjad>[hide=true]

This is useful for generating and embedding rendered score images without
showing any of the Abjad code.

You can also remove all of the prompts from a code block with the following
opening tag:

<abjad>[strip_prompt=true]

257

Abjad Documentation, Release 2.12

Simply use Abjad’s show() function to have Abjad call LilyPond on the Abjad
snippet and embed the rendered image in the document.

All Abjad snippets *must* start with no indentation in the document.
EXAMPLES

1. Create an HTML, LaTex or ReST document with embedded Abjad code
between <abjad></abjad> tags. The code *must* be fully flushed
to the left, with no tabs or spaces. The content of an HTML file
with embedded Abjad might look like this:

This is an HTML document. Here is Abjad code:

<abjad>

v = Voice("c’4 d’4 e’4 £
beamtools.BeamSpanner (v)
show (v)

</abjad>

rqm)

More ordinary HTML text here.
2. Call "abjad-book on the file just created:

abjad-book file.htm.raw

51.1 HTML with embedded Abjad

To see ab jad-book in action, open a file and write some HTML by hand. Add some Abjad code to your HTML
between open and close <abjad> </abjad> tags.

<html>
<p>This is an HTML document.</p>
<p>The code is standard hypertext mark-up.</p>

<p>Here is some music notation generated automatically by Abjad:</p>

<abjad>

v = Voice("c’8 d’' e’ £’ g’ a’ b’ c'’'")
beam = beamtools.BeamSpanner (v)

show (v)

</abjad>

<p>And here is more ordinary HTML.</p>

</html>

Save your the file with the name example.html.raw. You now have an HTML file with embedded Abjad
code.

In the terminal, call abjad-book on example.html.raw.

$ abjad-book example.html.raw example.html

Parsing file...
Rendering "abjad-book-1.1ly"...

The application opens example.html . raw, finds all Abjad code between <abjad> </abjad> tags, executes it,
and then creates and inserts image files of music notation accordingly.

Open example.html with your browser.

258 Chapter 51. Using abjad-book

Abjad Documentation, Release 2.12

ena example-with-notation. html

q @ 4 Fle:ff Users ftrevorbaca/ Deskiop/example-with-notatienhtml = Q= Google

This is an HTML document.
The code is standard hypenext mark-up.

Here is some music notation generated automatically by Abjad:

abjad> ¥ = Volce|construct.scale(®))
abjad> Beam(wv)
abjad> show(wv)

And here is more ordinary HTML.

-

) [4]

That’s all there is to it. abjad-book lets you open a file and type HTML by hand with Abjad sandwiched
between the special <abjad> </abjad> tags described here. Run ab jad-book on such a hybrid file to create pure

HTML with images of music notation created by Abjad.

Note: abjad-book makes use of ImageMagick’s convert application to crop and scale PNG images generated
for HTML and ReST documents. For LaTeX documents, ab jad-book uses pdfcrop for cropping PDFs.

51.2 LaTeX with embedded Abjad

You can use ab jad-book to insert Abjad code and score excerpts into any LaTeX you create. Type the sample

code below into a file.

\documentclass{article}
\usepackage{graphicx}
\usepackage{listings}
\begin{document }

This is a standard LaTeX document with embedded Abjad.

The code below creates an Abjad measure and then prints the measure
format string.

<abjad>

measure = Measure((5, 8), "c'8 d'8 e'8 £'8 g'38")

f (measure)

</abjad>

This next bit of code knows about the measure we defined earlier.
<abjad>

iotools.write_expr_to_ly (measure, 'abjad-book-1', docs=True) <hide
</abjad>

And this is the end of the our sample LaTeX document.

\end{document }

51.2. LaTeX with embedded Abjad

259

http://www.imagemagick.org/script/convert.php

Abjad Documentation, Release 2.12

Save your file with the name example.tex.raw. You now have a LaTeX file with embedded Abjad code.
In the terminal, call abjad-book on example.tex.raw.

$ abjad-book example.tex.raw example.tex

Processing 'example.tex.raw'. Will write output to 'example.tex'...
Parsing file...
Rendering "abjad-book-1.1ly"...

The application open example.tex.raw, finds all code between Abjad tags, executes it, and then creates and
inserts Abjad interpreter output and PDF files of music notation. You can view the contents of the next LaTeX file
abjad-book has created.

\documentclass{article}
\usepackage{graphicx}
\usepackage{listings}
\begin{document}

This is a standard LaTeX document with embedded Abjad.

The code below creates an Abjad measure and then prints the measure
format string.

\begin{lstlisting} [basicstyle=\footnotesize, tabsize=4, showtabs=false, showspaces=false]
>>> measure = Measure((5, 8), "c'8 d'8 '8 £'8 g'8")
>>> f (measure)
{
\time 5/8
c'8
]
T

Q H O Q
w ©

}
\end{lstlisting}

This next bit of code knows about the measure we defined earlier.
This code renders the measure as a PDF using a template suitable
for inclusion in LaTeX documents.
\includegraphics{images/abjad-book-1.pdf}

And this is the end of the our sample LaTeX document.

\end{document }

You can now process the file example.tex just like any other LaTeX file, using pdflatex or TexShop or
whatever LaTeX compilation program you normally use on your computer.

$ pdflatex example.tex
This is pdfTeXk, Version 3.141592-1.40.3 (Web2C 7.5.6)

%$&—line parsing enabled.
entering extended mode

And then open the resulting PDF.

260 Chapter 51. Using abjad-book

Abjad Documentation, Release 2.12

51.3 Using abjad-book on ReST documents

You can call abjad-book on ReST documents, too. Follow the examples given here for HTML and LaTeX
documents and modify accordingly.

51.4 Using [hide=true]

You can add [hide=true] to any abjad-book example to show only music notation.

<abjad>[hide=true]

staff = Staff("c'8 d'8 '8 £'8 g'8 a'8 b''8")
iotools.write_expr_to_ly(staff, 'staff-example', docs=True)
</abjad>

51.3. Using abjad-book on ReST documents 261

Abjad Documentation, Release 2.12

262 Chapter 51. Using abjad-book

CHAPTER
FIFTYTWO

TIMING CODE

You can time code with Python’s built-in t imeit module:

from abjad import =«
import timeit

timer = timeit.Timer ('Note (0, (1, 4))’, 'from _ main__ import Note’)
print timer.timeit (1000)

0.225436925888

These results show that 1000 notes take 0.23 seconds to create.

Other Python timing modules are available for download on the public Internet.

263

Abjad Documentation, Release 2.12

264 Chapter 52. Timing code

CHAPTER
FIFTYTHREE

PROFILING CODE

Profile code with profile_expr () inthe iotools package:

>>> iotools.profile_expr (' Note (0,
Sun Aug 14 16:50:36 2011

327 function calls

Ordered by:

(1,

4)) ")
_tmp_abj_profile

(312 primitive calls) in 0.001 CPU seconds

cumulative time
List reduced from 96 to 12 due to restriction <12>

ncalls tottime

I T T = T T = S =y Sy S Y

O O O O OO oo oo

0.
0.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

000

percall

0.
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

O O OO OO OO o oo

000

cumtime

o

O OO OO OO OoO o oo

.001
.001
.001
.001
.001
.001
.000
.000
.000
.000
.000
.000

percall

0

001

0.001

O O O O OO oo oo

.001
.001
.001
.001
.000
.000
.000
.000
.000
.000

These results show 327 function calls to create a note.

filename:lineno (function)

<string>:1 (<module>)

Note.py:18(__init_)

Note.py:133 (fset)

NoteHead.py:18(__init_)

NoteHead.py:121 (fset)
NamedChromaticPitch.py:28 (__new_)
Leaf.py:18(__init_)
chromatic_pitch_name_to_diatonic_pitch_numbe
octave_tick_string_to_octave_number.py:4 (oct
re.py:134 (match)

re.py:227 (_compile)

sre_compile.py:501 (compile)

The profile_expr () function wraps the Python cProfile and pstats modules.

265

Abjad Documentation, Release 2.12

266 Chapter 53. Profiling code

CHAPTER
FIFTYFOUR

MEMORY CONSUMPTION

You can examine memory consumption with tools included in the guppy module:

from guppy import hpy

hp = hpy ()
hp.setrelheap (
[Note (

notes =

h = hp.heap()

print h

Partition of a set of 11024
Count

Index
0

1
2
3

1000
1004
2003
1000

1000

1000
1000
1000

1011
1000

<6 more rows.

)
0, (1, 4)) for x in range(1000)

objects.
% Size % Cumulative
9 124000 21 124000
9 116464 20 240464
18 76300 13 316764
9 52000 9 368764
9 44000 8 412764
9 44000 8 456764
9 40000 7 496764
9 32000 5 528764
9 28568 5 557332
9 28000 5 585332 1

Type e.g. '_.more'

These results show 586K for 1000 notes.

to view.>

S

)

21
41
54
63

70

78
85
90

95
00

Total size = 586364 bytes.

Kind (class / dict of class)
abjad.tools.notetools.Note.Note.Note
__builtin__ .set

list

abjad.tools.pitchtools.NamedChromaticPitch.NamedChro:
icPitch.NamedChromaticPitch

abjad.interfaces._OffsetInterface._OffsetInterface._
setInterface
abjad.tools.notetools.NoteHead.NoteHead.NoteHead
0x23addo

abjad.interfaces.ParentagelInterface.Parentagelnterfa
ParentageInterface
str

abjad.interfaces._NavigationInterface._NavigationInt
ace._NavigationInterface

You must download guppy from the public Internet because the module is not included in the Python standard

library.

267

Abjad Documentation, Release 2.12

268 Chapter 54. Memory consumption

CHAPTER
FIFTYFIVE

CLASS ATTRIBUTES

Consider the definition of this class:

class FooWithInstanceAttribute (object) :

def _ init_ (self):
self.constants = (
"red’, ’'orange’, ’'yellow’, ’green’,
"blue’, ’indigo’, ’'violet’,

)

1000 objects consume 176k:

from guppy import hpy

hp = hpy ()

hp.setrelheap ()

objects = [FooWithInstanceAttribute () for x in range (1000)
h = hp.heap ()

print h

Partition of a set of 2004 objects. Total size = 176536 bytes.

Index Count % Size % Cumulative % Kind (class / dict of class)
0 1000 50 140000 79 140000 79 dict of _ main__ .FooWithInstanceAttribute
1 1000 50 32000 18 172000 97 _ main_ .FooWithInstanceAttribute
2 1 0 4132 2 176132 100 1list
3 1 0 348 0 176480 100 types.FrameType
4 1 0 44 0 176524 100 __builtin__ .weakref
5 1 0 12 0 176536 100 int

But consider the definition of this class:

class FooWithSharedClassAttribute (object) :

def _ init_ (self):
pass

self.constants = (
"red’, ’'orange’, ’‘yellow’, ’green’,
"blue’, ’indigo’, ’violet’,

)

1000 objects consume only 36k:

from guppy import hpy

hp = hpy ()

hp.setrelheap ()

objects = [FooWithClassAttribute() for x in range (1000)]
h = hp.heap()

print h

Partition of a set of 1004 objects. Total size = 36536 bytes.

Index Count % Size % Cumulative % Kind (class / dict of class)
0 1000 100 32000 88 32000 88 _ _main__ .FooWithClassAttribute
1 1 0 4132 11 36132 99 1list

269

Abjad Documentation, Release 2.12

2 1 0 348 1 36480 100 types.FrameType
3 1 0 44 0 36524 100 _ builtin_ .weakref
4 1 0 12 0 36536 100 int

Objects that share class attributes between them can consume less memory than objects that don’t. But consider
the usual provisions between class attributes and instance attributes when implementing custom classes. Class
attributes make sense when objects will never modify the attribute in question. Class attributes also make sense
when objects will modify the attribute in question and will desire to change the attribute in question for all other
like objects at the same time. Probably best to use instance attributes in most other cases.

270 Chapter 55. Class attributes

CHAPTER
FIFTYSIX

Consider the definition of this class:

class Foo (object)

def _ init_ (self,
self.a =
self.b
self.c

a, b, c):

a
b
©

1000 objects consume 176k:

from guppy import hpy
hp = hpy ()
hp.setrelheap ()
objects [Foo (1,
h hp.heap ()
print h

2, 3) for x in range (1000)

Partition of a set of 2004 objects.

Index Count % Size % Cumulative
0 1000 50 140000 79 140000
1 1000 50 32000 18 172000
2 1 0 4132 2 176132
3 1 0 348 0 176480
4 1 0 44 0 176524
5 1 0 12 0 176536

But consider the definition of this class:

class FooWithSlots (object) :

’

c’)
c):

__slots___ a’

def _ init_ (self,
self.a =
self.b
self.c =

"o,
a, b,

(
(
a
—b
©
1000 objects consume only 40k:

from guppy import hpy

Total size

o
)

79
97
100
100
100
100

USING SLOTS

176536 bytes.

Kind (class / dict of class)

dict of _ main__ .FooWithInstanceAttribute
_ _main__ .FooWithInstanceAttribute

list

types.FrameType

__builtin__ .weakref

int

hp = hpy ()

hp.setrelheap ()

objects = [FooWithSlots(l, 2, 3) for x in range (1000)]

h = hp.heap()

print h

Partition of a set of 1004 objects. Total size = 40536 bytes.

Index Count % Size % Cumulative % Kind (class / dict of class)

0 1000 100 36000 89 36000 89 _ _main__ .Bar
1 1 0 4132 10 40132 99 1list
2 1 0 348 1 40480 100 types.FrameType

271

Abjad Documentation, Release 2.12

3 1 0 44 0 40524 100 __builtin__ .weakref
4 1 0 12 0 40536 100 int

The example here confirms the Python Reference Manual 3.4.2.4: “By default, instances of both old and new-style
classes have a dictionary for attribute storage. This wastes space for objects having very few instance variables.
The space consumption can become acute when creating large numbers of instances.”

272 Chapter 56. Using slots

CHAPTER
FIFTYSEVEN

CODING STANDARDS

Indent with spaces, not with tabs. Use four spaces at a time:

def foo(x, y):
return x + y

Introduce comments with one pound sign and a single space:
comment before foo
) 8

def foo(x, y
return x + y

Avoid from. Instead of from fractions import Fraction use:

import fractions

Favor early imports at the head of each module. Only one import per line.
Arrange standard library imports alphabetically at the head of each module:

import fractions
import types

Follow standard library imports with intrapackage Abjad imports arranged alphabetically:

import footools
import bartools
import blahtools

Include two blank lines after import statements before the rest of the module:

import fractions
import types

import footools
import bartools
import blahtools

class Foo (object) :

Wrap docstrings with triple apostrophes and align like this:
def foo(x, y):
//’/This is the first line of the foo docstring.
This is the second line of the foo docstring.

And this is the last line of the foo docstring.
rr

Use paired apostrophes to delimit strings:

s = "foo’

Use paired quotation marks to delimit strings within a string:

273

Abjad Documentation, Release 2.12

s = "foo and "bar"’

Name classes in upper camelcase:

def FooBar (object) :

Name bound methods in underscore-delimited lowercase:
def Foo (object) :

def bar_blah (self):

def bar_baz (self):

Name module-level functions in underscore-delimited lowercase:

def foo_bar () :

def foo_blah():

Separate bound method definitions with a single empty line:
class FooBar (object) :

def __init__ (self, x, y):

def bar_blah(self):

def bar_baz (self):

Organize the definitions of core classes into the nine following major sections:
class FooBar (object) :

CLASS ATTRIBUTES

special_enumeration = (’foo’, ’'bar’, ’"blah’)

INITIALIZER

def _ init__ (self, x, y):

SPECIAL METHODS

def __ _repr__ (self):

def _ str_ (self):

READ-ONLY PRIVATE PROPERTIES

@property
def _foo(self):

READ / WRITE PRIVATE PROPERTIES

@apply
def _bar():
def fget (self):

274 Chapter 57. Coding standards

Abjad Documentation, Release 2.12

def fset(self, expr):
return property (xxlocals())
PRIVATE METHODS

def _blah(self, x, y):

READ-ONLY PUBLIC PROPERTIES

@property
def foo(self):

D)

READ / WRITE PUBLIC PROPERTIES
@apply
def bar():

def fget (self):

def fset (self, expr):

return property (xxlocals())

PUBLIC METHODS

def blah(self, expr):

Use < less-than signs in preference to greater-than signs:

if x <y < z:

Preceed private class attributes with a single underscore.

Alphabetize method names.

Alphabetize keyword arguments.

Include keyword argument names explicitly in function calls.

Limit docstring lines to 99 characters.

Limit source lines to 110 characters and use \ to break lines where necessary.
Eliminate trivial slice indices. Use s [:4] instead of s [0:4].

Prefer new-style string formatting to old-style string interpolation. Use ’string {}

Q

content’ .format (expr) instead of ' string %$s content’ % expr.

Prefer list comprehensions to filter (), map () and apply ().

Do not abbreviate variable names. (But use expr for ‘expression’ and use i or j for loop counters.)
Name variables that represent a list or other collection of objects in the plural.

Name functions beginning with a verb. (But use noun_to_noun for conversion functions and
mathtools.noun for some mathtools functions.)

Avoid private classes.

Avoid private functions. (But use private class methods as necessary.)

Implement package-level functions in preference to staticmethod class methods.
Implement only one statement per line of code.

Implement only one class per module.

Implement only one function per module.

Author one py . test test file for every module-level function.

275

Abjad Documentation, Release 2.12

Author one py . test test file for every bound method in the public interface of a class.

276 Chapter 57. Coding standards

Part VII

Appendices

277

CHAPTER
FIFTYEIGHT

FROM TREVOR AND VICTOR

We are composers Trevor Baca and Victor Addn, creators of Abjad, and our earliest collaborative work dates back
to shared undergraduate years in Austin. It was the mid- to late-90s and we found ourselves interested in ways of
building up ever larger sets of musical materials in our scores, with ever greater amounts of musical information.

Our work then began with pitch formalization, creating materials in C and then writing the results as MIDI to hear
what we’d created. Turns out that this is a fairly common gateway into materials generation for many composers,
and so it was for us. Probably this was, and is, due to the ever present availability of MIDI and, to a lesser extent,
CSound. But even back then it was clear to us to finding ways to embody other aspects of the musical score
— from nested rhythms to the different approaches to the musical measure to the arbitrarily complex structures
possible with overlapping musical voices — would require a wholly different level of consideration, and different
development techniques as well.

As an example, consider flat lists of floating-point values. This basic data structure, together with the constant need
some type of quantification or rounding, feeds much of most composers’ work with CSound, pd and the like. It is
a good thing, therefore, that essentially all modern programming languages include tools for manipulating flat lists
of floats out of the box, or in the standard library. But what happens when you want to think of pitch as something
much more than integers for core values with, perhaps, floats for microtones? What if you want to work with
pitches as fully-fledged objects? Objects capable of carrying arbitrarily large sets of attributes and values? Objects
that might group together, first into sets, and then into larger assemblages, and then into still larger complexes of
pitch information loaded, or even overloaded, with cross-relationships or textural implications? Carrying this
surplus of information about pitch, or the potential uses of pitch, in data structures limited to, or centered around,
the list-of-floats paradigm then becomes a burden.

And what of working with rhythms not only as offset values, as implied by the list-of-floats approach, but as
arbitrarily nested, stretched, compressed and stacked sets of values, as allowed by the tupleting and measure
structures of conventional score? A different approach is needed.

There was, and still is, no reason to believe that general purpose programming languages and development tools
should come readily supplied with the objects and methods most suitable for composerly applications. And this
means that the attributes of a domain-specific language that will best meet the needs of composes interested in
working formally with the full complement of capabilities in traditional score remains an open question.

We continued our work in score formalization independenly until 2005, Trevor in a system that would come to be
called Lascaux, and Victor in a system dubbed Cuepatlahto. We experimented with C, Mathematica and Matlab
as the core programming languages driving our systems before settling independently on Python, Victor out of
experinece at MIT, where he was working on his masters at the Media Lab with Berry Vercoe, and Trevor out of
the working necessities of a professional developer and engineer.

We passed through indepedent experiences using Finale, Sibelius, Leland Smith’s SCORE, and even Adobe Illus-
trator as the notational rendering engines for Lascaux and Cuepatlahto. Through all of this, both systems were
designed to tackle a shared set of problems. These included:

1. The difficulty involved in transcribing larger scale and highly parameterized gestures and textures into tra-
ditional Western notation.

2. The general inflexbility of closed, commercial music notation software packages.

279

http://www.trevorbaca.com
http://www.victoradan.net

Abjad Documentation, Release 2.12

3. The relative inability of objects on the printed page in conventional score to point to each other — or, indeed,
to other objects or ideas outside the printed page — in ways rich enough to help capture, model and develop
long-range, nonlocal relationships throughout our scores.

Afer collaborating on a joint paper describing the two systems, and after discussing collaborative design and
implementation at length, both online and in weekends’ long review of our respective codebases, we decided to
combine our efforts into a single, unified project. That project is now Abjad.

In our work on Abjad we strive to develop a powerful and flexible symbolic system. We picked the phrase ‘for-
malized score control’, or FSC, as a nod to Xenakis, who was so far ahead in so many ways, and also to highlight
our primary project goal: to bring the full power of modern programming languages, and tools in mathematics,
text processing, pattern recognition, and modular, iterative and incremental development to bear on all parts of the
compositional process.

280 Chapter 58. From Trevor and Victor

CHAPTER
FIFTYNINE

WHY MIDI IS NOT ENOUGH

Given that Abjad models written musical score, it might seem odd for MIDI to be even mentioned in this manual.
Yet, until fairly recently, MIDI has played a role (sometimes tangential, other times fundamental) in a variety of
software tools related to music notation and engraving.

59.1 A very brief overview of MIDI

MIDI (Musical Instrument Digital Interface) was first introduced in 1981 by Dave Smith, the founder of Sequential
Circuits. The original purpose of MIDI was to allow the communication between different electronic musical
instruments; more specifically, to allow one device to send control data to another device. Typical messages
might be “note On” (play a note) “note Off” (turn off a note). A MIDI “note” message, for example, is composed
of three bytes: the first byte (the Status byte) tells the device what kind of message this is (e.g. a Note On message).
The second byte encodes key number (which key was pressed) and the third byte, velocity (how hard the key was
pressed). It should be clear that a Note in this context means something very different than Note in the context of
a traditional printed score. While the bias towards keyboard interfaces is clear in the definition of the MIDI Note
control message, one can still give the MIDI note a more general use by reinterpreting “key number” as pitch and
“velocity” as loudness, the usual perceptual correlates of these control changes as well as the most meaningful
musical parameters in western music.

With the subsequent proliferation of music production software, the SMF (Standard Midi File) was introduced to
allow the recording and storage of the control data from a MIDI stream. The SMF required a time stamp to keep
track of when control messages took place. These are called “delta-times” in the SMF specification.

“The MTrk chunk type is where actual song data is stored. It is simply a stream of MIDI events (and non-MIDI
events), preceded by delta-time values.”

In combination with the MIDI Note message, the addition of duration now allowed one to have a minimal but
sufficient machine representation—a machine score—of music requiring only these parameters: duration, pitch and
loudness. Such is the case of most piano music.

59.2 Limitations of MIDI from the point of view of score modeling

But, alas, there is much more information in a printed score that can not be practically encoded in a SMF. Common
musical notions such as meter, clef, key signature, articulation, to name only a few, are ignored. A desire to
include some of these concepts in MIDI is evident in the inclusion of some so called meta-events. From the SMF
specification: ” specifies non-MIDI information useful to this format or to sequencers.” Examples of meta-events
are Time Signature and Key Signature. In addition to the semantic elements just mentioned, there are also the
typographical elements (such as line thickness, spacing, color, fonts, etc.) that all printed scores carry. This
extra layer of information is completely absent in a SMF. However, from the point of view of encoding a printed
score, the main limitation of MIDI is not the lack musical features or the absence of typographical data, but the
assumption that musical durations, pitches and loudnesses can be each fully and efficiently encoded with integers
or even fractions. In a printed score, this is not the case for any of them. MIDI encodes only magnitudes: time

281

Abjad Documentation, Release 2.12

interval magnitudes, pitch interval magnitudes, velocity magnitudes. While these may be sufficient attributes for
an automated piano performance, they are not all the attributes of notes in a printed score.

59.3 Written note durations vs. MIDI delta-times

Assume a fixed tempo has been set. Assume that all magnitudes are represented with (and limited to) rational
numbers. A time interval magnitude d = 1/4 has an infinity of equivalent representations in terms of magnitude:
d=1/4=1/8*%2=1/8 + 1/16 * 2 ... etc. So, for example, while equivalent in magnitude, these are not the same
notated durations:

>>> ml = Measure((1l, 4), [Note("c’4")])

>>> m2 = Measure((l, 4), 2 % Note(0, (1, 8)))

>>> tietools.TieSpanner (m2)

TieSpanner (|1/4(2) 1)

>>> m3 = Measure((l1, 4), [Note(O, (1, 8))] + 2 x Note(0, (1, 16)))
>>> tietools.TieSpanner (m3)

TieSpanner (|1/4(3) |)

>>> r = stafftools.RhythmicStaff ([ml, m2, m3])

>>> show (r)

59.4 Written note pitch vs. MIDI note-on

A similar thing happens with pitches. In MIDI, key (pitch) number 61 is a half tone above middle C. But how is
this pitch to be notated? As a C sharp or a B flat?

>>> ml = Measure((l, 4), [Note(l, (1, 4))1)
>>> m2 = Measure((1, 4), [Note(('df’, 4), (1, 4))1)
>>> r = Staff ([ml, m2])

>>> show (r)

P>

5 I
|l Il
TR

59.5 Conclusion

MIDI was not designed for score representation. MIDI is a simple communication protocol intended for real-time
control. As such, it naturally lacks the adequate model to represent the full range of information found in printed
scores.

282 Chapter 59. Why MIDI is not enough

CHAPTER
SIXTY

WHY LILYPOND IS RIGHT FOR ABJAD

Early versions of Abjad wrote MIDI files for input to Finale and Sibelius. Later versions of Abjad wrote . pbx
files for input into Leland Smith’s SCORE. Over time we found LilyPond superior to Finale, Sibelius and SCORE.

60.1 Nested tuplets works out of the box

LilyPond uses a single construct to nest tuplets arbitrarily:

\new stafftools.RhythmicStaff {
\time 7/8
\times 7/8 {
c8.
\times 7/5 { cl6 cl6 cl6 cl6 cl6 }
\times 3/5 { c8 c8 c8 c8 c8 }

>>> staff = stafftools.RhythmicStaff ([Measure((7, 8), [1)1)

>>> measure = staff[0]
>>> measure.append (Note ('c8."))
>>> measure.append (Tuplet (Fraction (7, 5), 5 * Note(’cl6’)))

>>> beamtools.BeamSpanner (measure[-1])

BeamSpanner ({cl6, cl6, cl6, cl6, clé6})

>>> measure.append (Tuplet (Fraction (3, 5), 5 * Note(’c8’)))

>>> beamtools.BeamSpanner (measure[—-1])

BeamSpanner ({c8, c8, c8, c8, c8})

>>> Tuplet (Fraction(7, 8), measure.music)

Tuplet (7/8, [c8., {x 5:7 cl6, cl6, cl6, cl6, cl6 *}, {* 5:3 c8, c8, c8, c8, c8 *}1])
>>> staff.override.tuplet_bracket.bracket_visibility = True

>>> staff.override.tuplet_bracket.padding = 1.6

>>> show(staff, docs=True)

LilyPond’s tuplet input syntax works the same as any other recursive construct.

60.2 Broken tuplets work out of the box

LilyPond engraves tupletted notes interrupted by nontupletted notes correctly:

\new Staff {
\times 4/7 { c¢'1l6 c'1l6 c'l6 c'l6 }
c'8 c'8
\times 4/7 { c¢'1l6 c'1l6 c'l6 }

283

Abjad Documentation, Release 2.12

>>> t = Tuplet (Fraction (4, 7), Note(0, (1, 16)) = 4)
>>> notes = Note (0, (1, 8)) * 2

>>> u = Tuplet (Fraction (4, 7),

>>> pbeamtools.BeamSpanner (t)

BeamSpanner ({c’16, c’1l6, c’1l6, c’16})

>>> beamtools.BeamSpanner (notes)

BeamSpanner (c’8, c’8)

>>> beamtools.BeamSpanner (u)

BeamSpanner ({c’16, c’1l6, c’16})

>>> measure = Measure((4, 8), [t] + notes + [u])
>>> staff = stafftools.RhythmicStaff ([measure])

Note (0, (1, 16)) =* 3)

>>> show(staff, docs=True)

Tl — —7d =

' i i I R i [

60.3 Nonbinary meters work out of the box

The rhythm above rewrites with time signatures in place of tuplets:

\new Staff {
\time 4/28 c'16 c'l6 c'l6 c'l6 |
\time 2/8 <c¢'8 c'8 |
\time 3/28 c'l6 c'1l6 c'l6 |

>>> t = Measure((4, 28), Note(0, (1, 16)) =
>>> u Measure((2, 8), Note(0, (1, 8)) =* 2)
>>> v = Measure((3, 28), Note(0, (1, 16)) =
>>> beamtools.BeamSpanner (t)

BeamSpanner (|4/28(4) |)

>>> beamtools.BeamSpanner (u)

BeamSpanner ([2/8(2) |)

>>> beamtools.BeamSpanner (v)

BeamSpanner (|3/28(3) |)

>>> staff = stafftools.RhythmicStaff ([t, u, v])

4)

&)

>>> show (staff)

SR ol DI W ot

The time signatures 4/28 and 3/28 here have a denominator not equal to 4, 8, 16 or any other nonnegative
integer power of two. Abjad calls such time signatures nonbinary meters and LilyPond engraves them correctly.

60.4 Lilypond models the musical measure correctly

Most engraving packages make the concept of the measure out to be more important than it should. We see
evidence of this wherever an engraving package makes it difficult for either a long note or the notes of a tuplet to
cross a barline. These difficulties come from working the idea of measure-as-container deep into object model of
the package.

There is a competing way to model the musical measure that we might call the measure-as-background way of
thinking about things. Western notation pratice started absent any concept of the barline, introduced the idea
gradually, and has since retreated from the necessity of the convention. Engraving packages that pick out an
understanding of the barline from the 18th or 19th centuries subscribe to the measure-as-container view of things
and oversimplify the problem. One result of this is to render certain barline-crossing rhythmic figures either an
inelegant hack or an outright impossibility. LilyPond eschews the measure-as-container model in favor of the
measure-as-background model better able to handle both earlier and later notation practice.

284 Chapter 60. Why LilyPond is right for Abjad

CHAPTER
SIXTYONE

LILYPOND TEXT ALIGNMENT

LilyPond provides many ways to position text.

61.1 Default alighment

LilyPond left-aligns markup relative to the left edge of note heads by default.

>>> from abjad.tools import documentationtools
>>> staff = stafftools.RhythmicStaff(’'c’)

>>> markuptools.Markup (' XX’, Up) (staff[0]

Markup ((' XX’,), direction=Up) (c4)
>>> lilypond_file = documentationtools.make_text_alignment_example_lilypond_file (staff)
>>> show (lilypond_file)

XX

J

61.2 TextScript #’'self-alignment-X

Use #’ self-alignment—X to left-, center- or right-align markup relative to the left edge of note heads.

Note that changes to #’ self-alignment-X do not change the fact that markup positioning is by default
relative to the left edge of note heads.

>>> staff = stafftools.RhythmicStaff(’'c c c’)

>>> markuptools.Markup (' XX’, Up) (staff[0]

Markup ((" XX’,), direction=Up) (c4)
>>> staff[0] .override.text_script.self_alignment_X = ’left’
>>> markuptools.Markup (' XX’ , Up) (staff[1]
Markup ((XX’ ,), direction=Up) (c4)
>>> staff[l].override.text_script.self_alignment_X = ’center’
>>> markuptools.Markup (' XX’, Up) (staff[2])
Markup ((' XX’,), direction=Up) (c4)
>>> staff[2] .override.text_script.self_alignment_X = ’right’
>>> lilypond_file = documentationtools.make_text_alignment_example_lilypond_file (staff)
>>> show(lilypond_file)

XX XX XX

. J J

285

Abjad Documentation, Release 2.12

61.3 TextScript #’'X-offset

Use #’ X—offset to offset markup by some number of magic units in the horizontal direction.

Specify #’ X—of fset arguments as numbers like #2 . 5. Do not specify #’ X—of fset arguments as direction
contstants like #right.

Note that changes to #’ X—offset do not change the fact that markup positioning is by default relative to the
left edge of note heads.

>>> staff = stafftools.RhythmicStaff(’'c ¢ c c¢’)

>>> markuptools.Markup (' XX’, Up) (staff[0]

Markup ((XX’ ,), direction=Up) (c4)

>>> staff[0] .override.text_script.X offset = 0
>>> markuptools.Markup (' XX’, Up) (staff[1]
Markup ((" XX’,), direction=Up) (c4)

>>> staff[l].override.text_script.X offset = 2

>>> markuptools.Markup (' XX’, Up) (staff[2])
Markup ((' XX’,), direction=Up) (c4)

>>> staff[2] .override.text_script.X offset = 4
>>> markuptools.Markup (' XX’, Up) (staff[3]
Markup ((XX’ ,), direction=Up) (c4)
>>> staff[3].override.text_script.X offset = 6
>>> lilypond_file = documentationtools.make_text_alignment_example_lilypond_file (staff)
>>> show (staff)
N OXX XX

edJ S

286 Chapter 61. LilyPond text alignment

CHAPTER
SIXTYTWO

SCORE SNIPPET GALLERY

Abjad uses a collection of score snippets in many places throughout the docs, tests and other parts of the codebase.
Some of these are collected here.

62.1 Score snippet 1

This score features two measures with a beam spanner applied to each measure and a slur spanner applied to all
the notes in the score:

>>> staff = Staff(r"abj: | 2/8 c’8 d’8 2/8 e"8 £'8 |M)
>>> pbeamtools.apply_beam spanners_to_measures_in_expr (staff)
[BeamSpanner (|2/8(2) |), BeamSpanner ([2/8(2))]

>>> spannertools.SlurSpanner (staff.leaves)
SlurSpanner(c’8, d’8, e’8, £f’8)

>>> f (staff)
\new Staff {
{
\time 2/8
c’8 [(
d’8 1]

L 0]
o

>>> show (staff)

0

¥ S) —
Fal . — | —

685l

Score snippet 1 is used widely in the component split tests.

287

Abjad Documentation, Release 2.12

288 Chapter 62. Score Snippet Gallery

CHAPTER
SIXTYTHREE

CHANGE LOG

63.1 Changes from 2.10 to 2.11

Renamed t imetokentools package. The new name is rhythmmakertools.

Renamed all thythm maker classes. Replaced TimeTokenMaker with RhythmMaker everywhere. Replaced
Token with Division everywhere.

Renamed durationtools.yield_all_assignable_rationals(). The new name is
durationtools.yield_all_assignable_durations ().

Renamed durationtools.rewrite_rational_under_new_tempo (). The new name is
durationtools.rewrite_duration_under_new_tempo ().

Renamed durationtools.rewrite_duration_under_new_tempo (). The new name is
tempotools.rewrite_duration_under_new_tempo ().

Renamed tempotools.integer_tempo_to_tempo_multiplier_pairs (). The new name is
tempotools.rewrite_integer_tempo ().

Renamed tempotools.integer_tempo_to_tempo_multiplier_pairs_report (). The new
name is tempotools.report_integer_tempo_rewrite_pairs().

Removed durationtools.numeric_seconds_to_escaped_clock_string(). Use
durationtools.numeric_seconds_to_clock_string(escape_ticks=True) instead.

Removed durationtools.is_assignable_rational (). Use Duration.is_assignable prop-
erty instead.

Removed durationtools.all_are_duration_tokens (). Just coerce durations instead.

Removed durationtools.duration_token_to_duration_pair (). Just initialize duration objects
instead.
Removed durationtools.is_duration_token (). Just initialize duration objects instead. Or use

Duration.is_token () instead if true look-ahead is required.

Removed durationtools.yield_all_positive_rationals_uniquely (). Use
durationtools.yield_all_positive_rationals (unique=True) instead.

Removed durationtools.assignable_rational_to_dot_count property. Use
Duration.dot_count instead.

Removed durationtools.assignable_rational_to_lilypond_duration_string property.
Use Duration.lilypond_duration_string instead.

Removed durationtools.is_duration_pair (). Justinitialize duration objects instead.
Removed durationtools.is_binary_rational (). UseDuration.is_binary property instead.

Removed durationtools.is_proper_tuplet_multiplier (). Use
Multiplier.is_proper_tuplet_multiplier property instead.

289

Abjad Documentation, Release 2.12

Removed durationtools.duration_token_to_rational (). Justinitialize duration objects instead.

Removed durationtools.duration_tokens_to_rationals (). Just initialize duration objects in-
stead.
emoved durationtools.lilypond_duration_string_to_rational (). Just initialize duration

objects instead.

Removed durationtools.lilypond_duration_string_to_rational_list (). Function is no
longer supported.

Removed durationtools.rational_to_flag_count (). Use the Duration.flag_count prop-
erty instead.

Removed durationtools.rational_to_fraction_string(). Use str (Duration) instead.

Removed durationtools.rational_to_prolation_string(). Use the
Duration.prolation_string property instead.

Renamed durationtools.rational_to_proper_fraction (). The new name is
mathtools.fraction_to_proper_fraction().

Removed durationtools.rational_to_duration_pair_with_specified_integer_denominator ().
Use NonreducedFraction.with_denominator () instead.

Removed durationtools.rational_to_duration_pair_with_multiple_of_specified_integer_denomi
Use mathtools.NonreducedFraction.with_multiple_of_denominator () instead.

Removed durationtools.duration_pair_to_prolation_string(). Use the
Duration.prolation_string property instead.

Renamed durationtools.group_duration_tokens_by_implied_prolation (). The new name
isdurationtools.group_nonreduced_fractions_by_implied_prolation().

Removed durationtools.multiply_duration_pair (). UseNonreducedFraction.multiply_without_red
instead.

Removed durationtools.multiply_duration_pair_and_reduce_factors(). Use
NonreducedFraction.multiply_with_cross_cancelation () instead.

Removed durationtools.multiply_duration_pair_and_try_to_preserve_numerator ().
Use NonreducedFraction.multiply with_numerator_preservation () instead.

Removed durationtools.duration_token_to_assignable_duration_pairs (). Removed
durationtools.duration_token_to_assignable_rationals (). Functions are no longer sup-
ported. Use leaftools.make_leaves () ornotetools.make_notes () instead.

Removed durationtools.duration_tokens_to_duration_pairs (). Function is no longer sup-
ported. Just initialize durations intead.

Removed durationtools.duration_tokens_to_ least_ common_denominator (). Function is
no longer supported. Use mathtools.least_common_multiple () instead.

Renamed durationtools.duration_tokens_to_duration_pairs_with_least_common_denominator ().
The new name is durationtools.durations_to_nonreduced_fractions_with_common_denominator ().

Renamed durationtools.yield_all_assignable_durations(). The new name is
durationtools.yield_assignable_durations().

Renamed durationtools.yield_all_positive_integer_pairs(). The new name is
durationtools.yield_positive_nonreduced_fractions().

Renamed durationtools.yield_all_positive_rationals(). The new name is
durationtools.yield positive_fractions{().

Renamed durationtools.yield_positive_fractions (). The new name is
durationtools.yield_durations (). The function also now returns durations instead of fractions.

Renamed durationtools.yield_positive_nonreduced_fractions (). The new name is
durationtools.yield_nonreduced_fractions().

290 Chapter 63. Change log

Abjad Documentation, Release 2.12

Removed durationtools.yield_prolation_rewrite_pairs (). The functionality is no longer sup-
ported.

Renamed durationtools.yield_nonreduced_fractions(). The new name is
mathtools.yield nonreduced_fractions{().

Renamed Duration. is_binary property. The new nameis Duration.has_power_of_two_denominator.
Renamed Measure.is_binary property. The new name is Measure.has_power_of_two_denominator.

Renamed Tuplet.is_binary property. The new nameis Tuplet .has_power_of_two_denominator.

Renamed Measure.is_nonbinary property. The new name is Measure.has_non_power_of_two_denominator.
Renamed Tuplet.is_nonbinary property. The new nameis Tuplet .has_non_power_of_two_denominator.

Renamed DynamicMeasure.suppress_meter. The new name is
DynamicMeasure.suppress_time_signature.

Removed durationtools.integer_to_implied_prolation (). Use the
Duration.implied_prolation property instead.

Removed unused resttools.is_lilypond_rest_string()‘‘ function. Just instantiate rests instead.

Removed durationtools.is_lilypond_duration_string/(). Removed
durationtools.is_lilypond_duration_name (). Justinstantiate durations instead.

Removed componenttools.component_to_score_root (). Use Component.parentage.root
instead.

Removed componenttools.component_to_pitch_and_rhyhtm_ skeleton (). Use the parser in-
stead.

Removed componenttools.component_to_score_depth (). Use

Component .parentage.depth property instead.

Removed unused componenttools.all_are_orphan_components () function.

Removed unused componenttools.all_are_components_in_same_parent () function.
Removed unused componenttools.all_are_components_in_same_score () function.

Removed unused componenttools.all_are_contiguous_components_in_same_score ()
function.

Renamed leaftools.make_leaves_from_note_value_signal (). The new name is
leaftools.make_leaves_from_taleal().

Removed TimeSignatureMark.multiplier property. Use TimeSignatureMark.implied_prolation
instead.

Removed Measure.multiplier property. Use Measure.implied_prolation instead.

Deprecated timesignaturetools.time_signature_to_time_signature_with_power_of_two_denominatc
function. Use TimeSignatureMark.with_power_of_two_denominator () method instead.

Remvoed t imesignaturetools.time_signature_to_time_signature_with_power_of_two_denominator
function. Use TimeSignatureMark.with_power_of_two_denominator () method instead.

Moved one function from componenttools to measuretools. The function is
get_likely_multiplier_components ().

Moved one function from componenttools to formattools. The function is
report_component_format_contributions().

Globally replaced rhythm maker pattern names to talea. The name change harmonizes with the new names
fo the rhythm maker classes.

Removed big endian and little endian from codebase. Use
decrease_durations_monotonically=True keyword instead.

Removed the word durat ion_token from mainline. The term is deprecated. Use durat ion instead.

63.1. Changes from 2.10 to 2.11 291

Abjad Documentation, Release 2.12

Deprecated the term pitch_token. Use pitch instead.

Removed pitchtools.named_chromatic_pitch_tokens_to_named_chromatic_pitches ().
Just instantiate pitches instead.

Removed the term signal from the rhythmmakertools package. Use talea instead. The plural of talea
istalee.

Moved componenttools.component_to_tuplet_depth (). The function is now bound to parentage
as the Component .parentage.tuplet_depth property.

Moved componenttools.component_to_score_index (). The function is now bound to parentage as
the Component .parentage.score_index property.

Moved componenttools.component_to_containment_signature (). The function is now bound
to parentage as the Component .parentage.containment_signature property.

Moved componenttools.component_to_parentage_signature (). The function is now bound to
parentage as the Component . parentage.parentage_signature property.

Renamed componenttools.cut_component_by_at_prolated_duration (). The new name is
componenttools.shorten_component_by_prolated_duration().

Renamed componenttools.get_leftmost_components_with_prolated_duration_at_most ().
The new name is componenttools.get_leftmost_components_with_total_duration_at_most ().

Renamed componenttools.shorten_component_by_prolated_duration (). The new name is
componenttools.shorten_component_by_duration().

Renamed componenttools.sum_prolated_duration_of_components (). The new name is
componenttools.sum_duration_of_ components ().

Renamed componenttools.yield_components_grouped_by_prolated_duration (). The new
name is componenttools.yield_components_grouped_by_duration ().

Renamed labeltools.label_ leaves_in_expr_with_prolated_leaf_duration (). The new
name is labeltools.label_leaves_in_expr_with_leaf_duration ().

Renamed 1abeltools.label_tie_chains_in_expr_with_prolated_tie_chain_duration().
The new name is labeltools.label_tie_chains_in_expr_with_tie_chain_duration ().

Renamed 1eaftools.fuse_tied_leaves_in_components_once_by_prolated_durations_without_overh
The new name is leaftools.fuse_tied_leaves_in_components_once_by_durations_without_overhang (

Renamed leaftools.get_leaf_in_expr_with_maximum_prolated_duration (). The new
name is leaftools.get_leaf_in_expr_with_maximum_duration ().

Renamed leaftools.get_leaf_in_expr_with_minimum_prolated_duration (). The new
name is leaftools.get_leaf_in_expr_with_minimum_duration ().

Rename leaftools.list_prolated_durations_of_leaves_in_expr (). The new name is
leaftools.list_durations_of_ leaves_in_expr ().

Renamed VerticalMoment .prolated_offset toVerticalMoment.offset.

Merged componenttools.extend_left_in_parent_of_component () into
componenttools.extend_in_parent_of_component (). Use the left=True keyword.

Removed componenttools.extend_left_in_parent_of_component () Use
componenttools.extend_in_parent_of_component (left=True) instead.

Removed componenttools.get_component_start_offset (). Removed
componenttools.get_component_stop_offset (). Use the Component.start_offset
and Component . stop_offset properties instead.

Removed componenttools.get_component_start_offset_in_seconds(). Re-
moved componenttools.get_component_stop_offset_in_seconds(). Use the
Component.start_offset_in_seconds and Component.stop_offset_in_seconds prop-
erties instead.

292 Chapter 63. Change log

Abjad Documentation, Release 2.12

Removed componenttools.is_orphan_component (). Use the new
Component .parentage.is_orphan property instead.

Renamed componenttools.partition_components_by_durations_ge () The new name is
componenttools.partition_components_by_ durations_not_less_than()

Renamed componenttools.partition_components_by_durations_le () The new name is
componenttools.partition_components_by_ durations_not_greater_than ()

emoved componenttools.sum_preprolated_duration_of_components () Use
componenttools.sum_duration_of_components (preprolated=True) instead.

Removed componenttools.sum_duration_of_ components_in_seconds (). Use
componenttools.sum_duration_of_components (in_seconds=True) instead.

Changed ratio objects to reduce terms at initialization.
Changed diminution keyword to is_diminution in three functions:

tuplettools.leaf_to_tuplet_with_proportions ()
tuplettools.leaf_ to_tuplet_with_n_notes_of_equal_written_duration ()
tietools.tie_chain_to_tuplet_with_proportions ()

Moved three functions from componenttools to wellformednesstools. The functions are these:

is_well_formed_component ()
list_badly_formed_components_in_expr ()
tabulate_well_ formedness_violations_in_expr ()

Removed two componenttools functions. Use timerelationtools instead. The functions are these:

componenttools.number_is_between_start_and_stop_offsets_of_component ()
componenttools.number_is_between_start_and_stop_offsets_of_ component_in_seconds ()

Renamed t ied=True keyword in four functions:

leaftools.make_leaves ()
leaftools.make_tied_leaf ()
resttools.make_tied_rest ()
resttools.make_rests ()

Renamed the four ratio-related API functions:

tietools.tie_chain_to_tuplet_with_proportions ()
tuplettools.leaf_to_tuplet_with_proportions ()
tuplettools.make_tuplet_from_duration_and_proportions ()
tuplettools.make_tuplet_from proportions_and_pair ()

tietools.tie_chain_to_tuplet_with_ratio ()
tuplettools.leaf_to_tuplet_with_ratio()

tuplettools.make_tuplet_from_ duration_and_ratio ()
tuplettools.make_tuplet_from_nonreduced_ratio_and_nonreduced_fraction ()

Added four new public properties to Durat ion that replace functions:

Duration.equal_or_greater_assignable
Duration.equal_or_greater_power_of_two
Duration.equal_or_lesser_assignable
Duration.equal_or_lesser_power_of_two

durationtools.rational_to_equal_or_greater_assignable_rational ()
durationtools.rational_to_equal_or_greater_binary_rational ()
durationtools.rational_to_equal_or_lesser_assignable_rational ()
durationtools.rational_to_equal_or_lesser_binary_rational ()

63.1. Changes from 2.10 to 2.11 293

Abjad Documentation, Release 2.12

63.2 Older Versions

63.2.1 Changes from 2.9 to 2.10

Renamed the read-only format property to 1ilypond_format on all system objects.

All iteration functions are now housed in the new iterationtools package:

¢ Renamed:

chordtools.iterate_chords_forward_in_expr ()
chordtools.iterate_chords_backward_in_expr ()

iterationtools.

Renamed:

componenttools.
.iterate_components_forward_in_expr ()
componenttools.
componenttools.
componenttools.
componenttools.
componenttools.
componenttools.
componenttools.
componenttools.
componenttools.
componenttools.
componenttools.

componenttools

iterationtools.
iterationtools.
iterationtools.

iterationtools

Renamed:

containertools

iterationtools.

Renamed:

.iterate_thread_from_component (reverse=[True,
iterationtools.
iterationtools.
iterationtools.

iterate_chords_in_expr (reverse=[True, Falsel])

iterate_components_depth_first ()

iterate_components_backward_in_expr ()
iterate_namesakes_forward_from_component ()
iterate_namesakes_backward_from_component ()
iterate_thread_forward_from_component ()
iterate_thread_backward_from_component ()
iterate_thread_forward_in_expr ()
iterate_thread_backward_in_expr ()
iterate_timeline_forward_from_component ()
iterate_timeline_backward_from_component ()
iterate_timeline_forward_in_expr ()
iterate_timeline_backward_in_expr ()

iterate_components_depth_first ()
iterate_components_in_expr (reverse=[True, False])
iterate_namesakes_from_component (reverse=[True, False])
False])
iterate_thread_in_expr (reverse=[True, Falsel])
iterate_timeline_from_component (reverse=[True,
iterate_timeline_in_expr (reverse=[True, False])

False])

.iterate_containers_forward_in_expr ()
containertools.

iterate_containers_backward_in_expr ()

iterate_containers_in_expr (reverse=[True, False])

contexttools.iterate_contexts_forward_in_expr ()
contexttools.iterate_contexts_backward_in_expr ()

iterationtools.iterate_contexts_in_expr (reverse=[True, False])

¢ Renamed:

gracetools.iterate_components_and_grace_containers_forward_in_expr ()

iterationtools.iterate_components_and_grace_containers_in_expr ()

¢ Renamed:

leaftools.iterate_leaf pairs_forward_in_expr ()
leaftools.iterate_leaves_forward_in_expr ()
leaftools.iterate_leaves_backward_in_expr ()
leaftools.iterate_notes_and_chords_forward_in_expr ()
leaftools.iterate_notes_and_chords_backward_in_expr ()

294 Chapter 63. Change log

Abjad Documentation, Release 2.12

iterationtools.iterate_leaf pairs_in_expr ()
iterationtools.iterate_leaves_in_expr (reverse=[True, False])
iterationtools.iterate_notes_and_chords_in_expr (reverse=[True, False])

¢ Renamed:

measuretools.iterate_measures_forward_in_expr ()
measuretools.iterate_measures_backward_in_expr ()

iterationtools.iterate_measures_in_expr (reverse=[True, False])

¢ Renamed:

notetools.iterate_notes_forward_in_expr ()
notetools.iterate_notes_backward_in_expr ()

iterationtools.iterate_notes_in_expr (reverse=[True, Falsel])

¢ Renamed:

resttools.iterate_rests_forward_in_expr ()
resttools.iterate_rests_backward_in_expr ()

iterationtools.iterate_rests_in_expr (reverse=[True, Falsel)

¢ Renamed:

scoretools.iterate_scores_forward_in_expr ()
scoretools.iterate_scores_backward_in_expr ()

iterationtools.iterate_scores_in_expr (reverse=[True, False])

¢ Renamed:

skiptools.iterate_skips_forward_in_expr ()
skiptools.iterate_skips_backward_in_expr ()

iterationtools.iterate_skips_in_expr (reverse=[True, False])

¢ Renamed:

stafftools.iterate_staves_forward_in_expr ()
stafftools.iterate_staves_backward_in_expr ()

iterationtools.iterate_staves_in_expr (reverse=[True, False])

¢ Renamed:

tuplettools.iterate_tuplets_forward_in_expr ()
tuplettools.iterate_tuplets_backward_in_expr ()

iterationtools.iterate_tuplets_in_expr (reverse=[True, False])

¢ Renamed:
voicetools.iterate_semantic_voices_forward_in_expr ()
voicetools.iterate_semantic_voices_backward_in_expr ()

voicetools.iterate_voices_forward_in_expr ()
voicetools.iterate_voices_backward_in_expr ()

voicetools.iterate_semantic_voices_in_expr (reverse=[True, False])
voicetools.iterate_voices_in_expr (reverse=[True, False])

All labeling functions are now housed in the new labeltools package:

¢ Renamed:

63.2. Older Versions 295

Abjad Documentation, Release 2.12

chordtools.color_chord_note_heads_in_expr_by_pitch_class_color_map ()

labeltools.color_chord_note_heads_in_expr_by_pitch_class_color_map ()

¢ Renamed:

containertools.color_contents_of_container ()

labeltools.color_contents_of_container ()

¢ Renamed:

leaftools.color_leaf ()

leaftools.color_leaves_in_expr ()

leaftools.label leaves_in_expr_with_inversion_equivalent_chromatic_interval_classes ()
leaftools.label leaves_in_expr_with leaf depth()

leaftools.label leaves_in_expr_with_leaf durations ()

leaftools.label_ leaves_in_expr_with_leaf_ indices /()

leaftools.label_ leaves_in_expr_with leaf numbers ()
leaftools.label_leaves_in_expr_with_melodic_chromatic_interval_classes|()
leaftools.label_ leaves_in_expr_with_melodic_chromatic_intervals ()
leaftools.label_leaves_in_expr_with_melodic_counterpoint_interval_classes ()
leaftools.label_leaves_in_expr_with_melodic_counterpoint_intervals ()
leaftools.label_ leaves_in_expr_with_melodic_diatonic_interval_classes()
leaftools.label_leaves_in_expr_with_melodic_diatonic_intervals (
leaftools.label_ leaves_in_expr_with_pitch_class_numbers ()

leaftools.label_ leaves_in_expr_with_pitch_numbers ()
leaftools.label_leaves_in_expr_with leaf duration()

leaftools.label_ leaves_in_expr_with_tuplet_depth ()

leaftools.label_ leaves_in_expr_with_written_leaf_ duration ()

labeltools.color_leaf ()

labeltools.color_leaves_in_expr ()

labeltools.label_ leaves_in_expr_with_inversion_equivalent_chromatic_interval_classes ()
labeltools.label_leaves_in_expr_with_leaf_ depth()

labeltools.label_ leaves_in_expr_with_leaf durations ()
labeltools.label_leaves_in_expr_with_leaf_indices ()

labeltools.label_ leaves_in_expr_with_leaf numbers ()
labeltools.label_leaves_in_expr_with_melodic_chromatic_interval_classes ()
labeltools.label leaves_in_expr_with_melodic_chromatic_intervals ()
labeltools.label_leaves_in_expr_with_melodic_counterpoint_interval_classes ()
labeltools.label_ leaves_in_expr_with_melodic_counterpoint_intervals ()
labeltools.label_ leaves_in_expr_with_melodic_diatonic_interval_classes|()
labeltools.label_leaves_in_expr_with_melodic_diatonic_intervals ()
labeltools.label_ leaves_in_expr_with_pitch_class_numbers ()
labeltools.label_leaves_in_expr_with_pitch_numbers ()

labeltools.label_ leaves_in_expr_with_leaf duration ()

labeltools.label leaves_in_expr_with_tuplet_depth ()

labeltools.label leaves_in_expr_with_written_leaf_ duration ()

¢ Renamed:

markuptools.remove_markup_from_leaves_in_expr ()

labeltools.remove_markup_from_leaves_in_expr ()

¢ Renamed:

measuretools.color_measure ()
measuretools.color_measures_with _non_power_of_two_denominators_in_expr ()

labeltools.color_measure ()
labeltools.color_measures_with_non_power_of_ two_denominators_in_expr ()

¢ Renamed:

notetools.color_note_head_by_ numbered_chromatic_pitch_class_color_map ()
notetools.label_notes_in_expr_with_note_indices ()

296 Chapter 63. Change log

Abjad Documentation, Release 2.12

labeltools.color_note_head_by_numbered_chromatic_pitch_class_color_map ()
labeltools.label notes_in_expr_with_note_indices ()

¢ Renamed:

tietools.label_tie_chains_in_expr_with_tie_chain_duration ()
tietools.label _tie_chains_in_expr_with_tie_chain_durations ()
tietools.label_tie_chains_in_expr_with_written_tie_chain_duration ()

labeltools.label_tie_chains_in_expr_with_tie_chain_duration ()
labeltools.label_tie_chains_in_expr_with_tie_chain_durations ()
labeltools.label_tie_chains_in_expr_with_written_tie_chain_duration ()

¢ Renamed:

verticalitytools.label_vertical moments_in_expr_with_chromatic_interval_classes ()
verticalitytools.label_vertical moments_in_expr_with_chromatic_intervals ()
verticalitytools.label_vertical_moments_in_expr_with_counterpoint_intervals ()
verticalitytools.label_vertical moments_in_expr_with_diatonic_intervals ()
verticalitytools.label_vertical moments_in_ expr_with_interval_class_vectors ()
verticalitytools.label_vertical_moments_in_expr_with_numbered_chromatic_pitch_classes|()
verticalitytools.label_vertical_moments_in_expr_with_pitch_numbers ()

labeltools.label_vertical_moments_in_expr_with_chromatic_interval_classes ()
labeltools.label _vertical_moments_in_expr_with_chromatic_intervals ()
labeltools.label_vertical_moments_in_expr_with_counterpoint_intervals ()
labeltools.label_vertical_moments_in_expr_with_diatonic_intervals()
labeltools.label_vertical_moments_in_expr_with_interval_class_vectors ()
labeltools.label_vertical_moments_in_expr_with_numbered_chromatic_pitch_classes ()
labeltools.label_vertical_moments_in_expr_with_pitch_numbers ()

Renamed all functions that contained big_endian:

durationtools.duration_token_to_big _endian_list_of_assignable_duration_pairs ()
leaftools.fuse_leaves_big_endian ()
leaftools.fuse_leaves_in_tie_chain_by_immediate_parent_big_endian ()

durationtools.duration_token_to_assignable_duration_pairs ()
leaftools.fuse_leaves|()
leaftools.fuse_leaves_in_tie_chain_by_immediate_parent ()

Renamed all functions that contained prolated_offset tosimply offset:

componenttools.copy_governed_component_subtree_from prolated_offset_to()
componenttools.get_improper_descendents_of_component_that_cross_prolated_offset ()
containertools.delete_contents_of_container_starting at_or_after_ prolated_offset ()
containertools.delete_contents_of_container_starting before_or_at_prolated_offset ()
containertools.delete_contents_of_container_starting_strictly_after_prolated_offset ()
containertools.delete_contents_of_container_starting_strictly_before_prolated_offset ()
containertools.get_element_starting_at_exactly_prolated_offset ()
containertools.get_first_element_starting_at_or_after_prolated_offset ()
containertools.get_first_element_starting before_or_at_prolated_offset ()
containertools.get_first_element_starting strictly_ after prolated_offset ()
containertools.get_first_element_starting strictly_before_prolated_offset ()
prolated_offsettools.update_offset_values_of_ component ()
verticalitytools.get_vertical_moment_at_prolated_offset_in_expr ()

componenttools.copy_governed_component_subtree_from_offset_to()
componenttools.get_improper_descendents_of_component_that_cross_offset ()
containertools.delete_contents_of_container_starting_at_or_after_offset ()
containertools.delete_contents_of_container_starting before_or_at_offset ()
containertools.delete_contents_of_container_starting strictly_after_offset ()
containertools.delete_contents_of_container_starting strictly_before_offset ()
containertools.get_element_starting_at_exactly_offset ()
containertools.get_first_element_starting_at_or_after_offset ()
containertools.get_first_element_starting before_or_at_offset ()
containertools.get_first_element_starting strictly_after_offset ()
containertools.get_first_element_starting_strictly before_offset ()
offsettools.update_offset_values_of_component ()
verticalitytools.get_vertical_moment_at_offset_in_expr ()

63.2. Older Versions 297

Abjad Documentation, Release 2.12

Renamed prolated_duration to of fset in some functions:

componenttools.split_component_at_prolated_duration ()
componenttools.split_components_by_prolated_durations ()
leaftools.split_leaf_ at_prolated_duration ()
leaftools.split_leaf_at_prolated_duration_and_rest_right_half ()

componenttools.split_component_at_offset ()
componenttools.split_components_by_offsets|()
leaftools.split_leaf_at_offset ()
leaftools.split_leaf_at_offset_and_rest_right_half ()

Renamed all functions that contained as_string:

componenttools.report_component_format_contributions_as_string/()
containertools.report_container_modifications_as_string/()
measuretools.report_meter_distribution_as_string/()

formattools.report_component_format_contributions ()
containertools.report_container_modifications ()
measuretools.report_time_signature_distribution ()

Changes to the componenttools package:

e The componenttools.split_components_at_offsets () function no longer implements a
tie_after keyword. Usethenew tie_split_notes and tie_split_rests keywords. Note
that the new tie_split_rests keyword defaults to true where the old t ie_after keyword defaulted

to false. This changes the default behavior of the function.

Renamed:

componenttools
componenttools

componenttools

Renamed:

componenttools
componenttools

componenttools

Renamed:

componenttools

componenttools

Renamed:

componenttools
componenttools
componenttools
componenttools
componenttools
componenttools
componenttools
componenttools
componenttools
componenttools
componenttools
componenttools
componenttools
componenttools
componenttools
componenttools
componenttools
componenttools
componenttools

.extend_left_in_parent_of_component (grow_spanners=[True,

.extend_in_parent_of_component (grow_spanners=[True,

.extend_left_in_parent_of_ component_and_grow_spanners ()
.extend_left_in_parent_of_ component_and_do_not_grow_spanners ()

Falsel])

.extend_in_parent_of_component_and_grow_spanners (
.extend_in_parent_of_component_and_do_not_grow_spanners ()

Falsel])

.number_is_between_prolated_start_and_stop_offsets_of_component ()

.number_is_between_start_and_stop_offsets_of_component ()

.partition_components_cyclically_by_durations_in_seconds_exactly_with_overhang ()
.partition_components_cyclically_by_durations_in_seconds_exactly_without_overhang/()
.partition_components_cyclically_by_durations_in_seconds_ge_with_overhang ()
.partition_components_cyclically_by_durations_in_seconds_ge_without_overhang ()
.partition_components_cyclically_ by_durations_in_seconds_le_with_overhang()
.partition_components_cyclically_by_durations_in_seconds_le_without_overhang ()
.partition_components_cyclically_by_prolated_durations_exactly_with_overhang ()
.partition_components_cyclically_by_prolated_durations_exactly_without_overhang()
.partition_components_cyclically_by_prolated_durations_ge_with_overhang ()
.partition_components_cyclically_by_prolated_durations_ge_without_overhang ()
.partition_components_cyclically_by_prolated_durations_le_with_overhang ()
.partition_components_cyclically_by_prolated_durations_le_without_overhang/()
.partition_components_once_by_durations_in_seconds_exactly_with_overhang ()
.partition_components_once_by_durations_in_seconds_exactly_without_overhang()
.partition_components_once_by_durations_in_seconds_ge_with_overhang ()
.partition_components_once_by_durations_in_seconds_ge_without_overhang ()
.partition_components_once_by_durations_in_seconds_le_with_overhang()
.partition_components_once_by_durations_in_seconds_le_without_overhang ()
.partition_components_once_by_prolated_durations_exactly_with_overhang ()

298

Chapter 63. Change log

Abjad Documentation, Release 2.12

componenttools.partition_components_once_by_prolated_durations_exactly_without_overhang ()
componenttools.partition_components_once_by_prolated_durations_ge_with_overhang ()
componenttools.partition_components_once_by_prolated_durations_ge_without_overhang ()
componenttools.partition_components_once_by_prolated_durations_le_with_overhang/()
componenttools.partition_components_once_by_prolated_durations_le_without_overhang ()

componenttools.partition_components_by_durations_exactly ()
componenttools.partition_components_by_durations_not_less_than ()
componenttools.partition_components_by_durations_not_greater_than ()

¢ Renamed:

componenttools.split_component_at_prolated_duration_and_do_not_fracture_crossing_spanners (
componenttools.split_component_at_prolated_duration_and_fracture_crossing_spanners ()

componenttools.split_component_at_offset (fracture_spanners=[True, Falsel])

* Renamed:
componenttools.split_components_cyclically_by_prolated_durations_and_do_not_fracture_crossing_spanners (
componenttools.split_components_cyclically by_prolated_durations_and_fracture_crossing_spanners ()

componenttools.split_components_once_by_prolated_durations_and_do_not_fracture_crossing_spanners ()
componenttools.split_components_once_by_prolated_durations_and_fracture_crossing_spanners (

componenttools.split_components_at_offsets (fracture_spanners=[True, False], cyclic=[True, False])

Changeds to the continertools package:
* Renamed:

containertools.remove_empty_containers_in_expr ()
containertools.remove_leafless_containers_in_expr ()

¢ Renamed:

containertools.replace_larger_left_half_ of_ elements_in_container_with_big_endian_rests ()
containertools.replace_larger_left_half of_ elements_in_container_ with_little_endian_rests ()
containertools.replace_larger_right_half of elements_in_container_with_big_endian_rests ()
containertools.replace_larger_right_half of_ elements_in_container_with_little_endian_rests ()
containertools.replace_n_edge_elements_in_container_with_pbig_endian_rests ()
containertools.replace_n_edge_elements_in_container_with_little_endian_rests ()
containertools.replace_n_edge_elements_in_container_with_rests ()
containertools.replace_smaller_ left _half of elements_in_container with_big_endian_rests ()
containertools.replace_smaller_left_half of_ elements_in_container_ with_little_endian_rests ()
containertools.replace_smaller_right_half of_elements_in_container_with_big_endian_rests ()
containertools.replace_smaller_right_half of_elements_in_container_with_little_endian_rests()

containertools.replace_container_slice_with_rests()

¢ Renamed:

containertools.split_container_at_index_and_do_not_fracture_crossing_spanners ()
containertools.split_container_at_index_and_fracture_crossing_spanners ()

containertools.split_container_at_index (fracture_spanners=[True, Falsel])

¢ Renamed:
containertools.split_container_cyclically_by_counts_and_do_not_fracture_crossing_spanners (
containertools.split_container_cyclically_by_counts_and_fracture_crossing_spanners ()

containertools.split_container_once_by_counts_and_do_not_fracture_crossing_spanners ()
containertools.split_container_once_by_counts_and_fracture_crossing_spanners ()

containertools.split_container_by_counts (fracture_spanners=[True, False], cyclic=[True, Falsel])

Changes to the durationtools package:

¢ Renamed:

63.2. Older Versions 299

Abjad Documentation, Release 2.12

durationtools.yield_all_assignable_rationals_in_cantor_diagonalized_order ()
durationtools.yield_all positive_integer_pairs_in_cantor_diagonalized_order ()
durationtools.yield_all positive_rationals_in_cantor_diagonalized_order ()
durationtools.yield_all_positive_rationals_in_cantor_diagonalized_order_uniquely ()
durationtools.yield_all_prolation_rewrite_pairs_of_rational_in_cantor_diagonalized_order ()

durationtools.yield_assignable_durations ()
mathtools.yield _nonreduced_fractions ()
durationtools.yield_durations ()
durationtools.yield_all_positive_rationals_uniquely ()
metricmodulationtools.yield prolation_rewrite_pairs()

Changes to the instrumenttools package:
* Renamed:

instrumenttools.transpose_notes_and_chords_in_expr_from_sounding_pitch_to_fingered_pitch()
instrumenttools.transpose_from_sounding_pitch_to_fingered_pitch ()

¢ Renamed:

instrumenttools.transpose_notes_and_chords_in_expr_ from fingered_ pitch_to_sounding_pitch ()
instrumenttools.transpose_from_fingered_pitch_to_sounding_pitch ()

Chnages to the leaftools package:
¢ Renamed:
leaftools.fuse_leaves_in_container_once_by_counts_into_big_endian_notes ()
leaftools.fuse_leaves_in_container_once_by_counts_into_big_endian_rests ()

leaftools.fuse_leaves_in_container_once_by_counts_into_little_endian_notes ()
leaftools.fuse_leaves_in_container_once_by_counts_into_little_endian_rests ()

leaftools.fuse_leaves_in_container_once_by_counts (big_endian=[True, False], klass=None)

¢ Renamed:
leaftools.leaf_to_augmented_tuplet_with_n_notes_of_equal_written_duration ()
leaftools.leaf_ to_augmented_tuplet_with_proportions ()

leaftools.leaf_to_diminished_tuplet_with_n_notes_of_equal_written_duration ()
leaftools.leaf_to_diminished_tuplet_with_proportions ()

tuplettools.leaf_to_tuplet_with_n_notes_of_equal_written_duration ()
tuplettools.leaf_to_tuplet_with_ratio()

¢ Renamed:

leaftools.split_leaf_at_offset_and_rest_right_half ()
leaftools.rest_leaf_at_offset ()

¢ Renamed:

leaftools.repeat_leaf_and_extend_spanners ()
leaftools.repeat_leaves_in_expr_and_extend_spanners ()

leaftools.repeat_leaf ()
leaftools.repeat_leaves_in_expr ()

Changes to the mathtools package.
¢ Removed mathtools.partition_integer_into_thirds ().
Changes to the measuretools package:

¢ Renamed:

300 Chapter 63. Change log

Abjad Documentation, Release 2.12

measuretools.fill _measures_in_expr_with_meter_denominator_notes ()
measuretools.move_prolation_of_ full measure_tuplet_to_meter_of_ measure ()
measuretools.multiply_contents_of_measures_in_expr_and_scale_meter_denominators ()
measuretools.scale_measure_by multiplier_and_adjust_meter ()

measuretools.fill _measures_in_expr_with_time_signature_denominator_notes ()
measuretools.move_full measure_tuplet_prolation_to_measure_time_signature ()
measuretools.multiply_contents_of_measures_in_expr_and_scale_time_signature_denominators ()
measuretools.scale_measure_and_adjust_time_signature ()

¢ Renamed:

measuretools.fill_measures_in_expr_with_big_endian_notes ()
measuretools.fill measures_in_expr_with_litte_endian_notes()

measuretools.measuretools.fill_measures_in_expr_with_minimal_number_of_notes (big_endian=[True, False])

¢ Renamed:

measuretools.extend_measures_in_expr_and_apply_full _measure_tuplets_to_measure_contents ()
measuretoools.extend_measures_in_expr_and_apply_full measure_tuplets ()

¢ Renamed:

measuretools.get_previous_measure_from_component ()
measuretools.get_previous_measure_from_component ()

¢ Renamed:

measuretools.multiply_contents_of_measures_in_expr_and_scale_time_signature_denominators ()
measuretools.multiply_and_scale_contents_of_measures_in_expr ()

¢ Renamed:

measuretools.pitch_array_row_to_measure ()
measuretools.pitch_array_to_measures ()

pitchtools.pitch_array_row_to_measure ()
pitchtools.pitch_array_to_measures ()

Changes to the pitchtools package:
* Renamed:

pitchtools.calculate_harmonic_chromatic_interval_class_from pitch_carrier_ to_pitch_carrier ()
pitchtools.calculate_harmonic_chromatic_interval_from_pitch_carrier_ to_pitch_carrier ()
pitchtools.calculate_harmonic_counterpoint_interval_class_from _named_chromatic_pitch_to_named_chromatic_:
pitchtools.calculate_harmonic_counterpoint_interval_from_named_chromatic_pitch_to_named_chromatic_pitch(
pitchtools.calculate_harmonic_diatonic_interval_class_from_named_chromatic_pitch_to_named_chromatic_pitc
pitchtools.calculate_harmonic_diatonic_interval_from_named_chromatic_pitch_to_named_chromatic_pitch()

pitchtools.calculate_harmonic_chromatic_interval_class ()
pitchtools.calculate_harmonic_chromatic_interval ()
pitchtools.calculate_harmonic_counterpoint_interval_class ()
pitchtools.calculate_harmonic_counterpoint_interval ()
pitchtools.calculate_harmonic_diatonic_interval_class ()
pitchtools.calculate_harmonic_diatonic_interval ()

¢ Renamed:

pitchtools.calculate_melodic_chromatic_interval_class_from_pitch_carrier to_pitch_carrier()
pitchtools.calculate_melodic_chromatic_interval_from_pitch_carrier_to_pitch_carrier ()
pitchtools.calculate_melodic_counterpoint_interval_ class_from_named_chromatic_pitch_to_named_chromatic_p
pitchtools.calculate_melodic_counterpoint_interval_from_named_chromatic_pitch_to_named_chromatic_pitch ()
pitchtools.calculate_melodic_diatonic_interval_class_from_named_chromatic_pitch_to_named_chromatic_pitch
pitchtools.calculate_melodic_diatonic_interval_from_named_chromatic_pitch_to_named_chromatic_pitch ()

63.2. Older Versions 301

Abjad Documentation, Release 2.12

pitchtools.
pitchtools.
pitchtools.
pitchtools.
pitchtools.
pitchtools.

Renamed:

pitchtools.

pitchtools.

Renamed:

pitchtools.

pitchtools.

Renamed:

pitchtools.

pitchtools.

Renamed:

pitchtools.

pitchtools.

Renamed:

pitchtools.

pitchtools.

Renamed:

pitchtools.

pitchtools.

Renamed:

pitchtools.

pitchtools.

Renamed:

pitchtools.

pitchtools.

Renamed:

pitchtools.

pitchtools.

Renamed:

pitchtools.

pitchtools.

calculate_melodic_chromatic_interval_class ()
calculate_melodic_chromatic_interval ()
calculate_melodic_counterpoint_interval_class ()
calculate_melodic_counterpoint_interval ()
calculate_melodic_diatonic_interval_class()
calculate_melodic_diatonic_interval ()

chromatic_pitch_class_name_to_diatonic_pitch_class_name_alphabetic_accidental_abbreviation_pa

split_chromatic_pitch_class_name ()

diatonic_interval_number_and_chromatic_interval_number_to_melodic_diatonic_interval ()

spell_chromatic_interval_number ()

named_chromatic_pitches_to_harmonic_chromatic_interval_ class_number_dictionary ()

harmonic_chromatic_interval_class_number_dictionary ()

chromatic_pitch_number_diatonic_pitch_class_name_to_alphabetic_accidental_abbreviation_octave,

chromatic_pitch_number_ diatonic_pitch_class_name_to_accidental_octave_number_pair ()

list_named_chromatic_pitch_carriers_in_expr_sorted_by_numbered_chromatic_pitch_class()

sort_named_chromatic_pitch_carriers_in_expr ()

named_chromatic_pitches_to_inversion_equivalent_chromatic_interval_class_number_dictionary ()

inversion_equivalent_chromatic_interval_class_number_dictionary ()

transpose_chromatic_pitch_class_number_by_octaves_to_nearest_neighbor_of_ chromatic_pitch_numb

transpose_chromatic_pitch_class_number_to_neighbor_of_chromatic_pitch_number ()

ordered_chromatic_pitch_class_numbers_are_within_ordered_chromatic_pitch_numbers ()

contains_subsegment ()

list_inversion_equivalent_chromatic_interval_classes_pairwise_between_pitch_carriers()

list_inversion_equivalent_chromatic_interval_classes_pairwise ()

list_melodic_chromatic_interval_numbers_pairwise_between_pitch_carriers()

list_melodic_chromatic_interval_numbers_pairwise ()

302

Chapter 63. Change log

Abjad Documentation, Release 2.12

¢ Renamed:

pitchtools

pitchtools

¢ Renamed:

pitchtools

.chromatic_pitch_number_to_diatonic_pitch_class_name_accidental_octave_number_triple ()

.chromatic_pitch_number_to_chromatic_pitch_triple ()

.apply_octavation_spanner_to_pitched_components ()

spannertools.apply_octavation_spanner_to_pitched_components ()

¢ Renamed:

pitchtools.

pitchtools.

¢ Renamed:

pitchtools.

pitchtools.

¢ Renamed:

pitchtools.

pitchtools.

set_ascending_named_chromatic_pitches_on_nontied_pitched_components_in_expr ()

set_ascending_named_chromatic_pitches_on_tie_chains_in_expr ()

set_ascending_diatonic_pitches_on_nontied_pitched_components_in_expr ()

set_ascending_diatonic_pitches_on_tie_chains_in_expr ()

transpose_chromatic_pitch_class_number_to_neighbor_of_chromatic_pitch_number ()

transpose_chromatic_pitch_class_number_chromatic_pitch_number_neighbor ()

Changes to the rhythmt reetools package:

¢ Renamed:

rhythmtreetools.parse_reduced_ly_syntax()

lilypondparsertools.parse_reduced_ly_syntax ()

Chnages to the scoretemplatetools package:

¢ Renamed:

scoretemplatetools.GroupedRhythmcStavesScoreTemplate.n

scoretemplatetools.GroupedRhythmcStavesScoreTemplate.staff_count

Changes to the scoretools package:

¢ Renamed:

scoretools.

pitchtools.

make_pitch_array_score_from pitch_arrays ()

make_pitch_array_score_from pitch_arrays ()

Changes to the sequencetools package:

¢ Renamed:

sequencetools.partition_sequence_cyclically_by_counts_with_overhang ()
sequencetools.partition_sequence_cyclically_by_counts_without_overhang()
sequencetools.partition_sequence_once_by_counts_with_overhang ()
sequencetools.partition_sequence_once_by_counts_without_overhang ()

sequencetools.partition_sequence_by_counts (cyclic=[True, False], overhang=[True, Falsel])

¢ Renamed:

63.2. Older Versions 303

Abjad Documentation, Release 2.12

sequencetools
sequencetools

sequencetools

¢ Renamed:

sequencetools
sequencetools
sequencetools
sequencetools

sequencetools

¢ Renamed:

sequencetools
sequencetools
sequencetools
sequencetools

sequencetools

¢ Renamed:

sequencetools
sequencetools
sequencetools
sequencetools

sequencetools

¢ Renamed:

sequencetools
sequencetools
sequencetools
sequencetools

sequencetools

¢ Renamed:

sequencetools
sequencetools

sequencetools

.partition_sequence_extended_to_counts (overhang=[True,

.partition_sequence_extended_to_counts_with_overhang ()
.partition_sequence_extended_to_counts_without_overhang ()

False])

.partition_sequence_cyclically_by_weights_at_least_with_overhang()
.partition_sequence_cyclically_by_weights_at_least_without_overhang()
.partition_sequence_once_by_weights_at_least_with_overhang ()
.partition_sequence_once_by_weights_at_least_without_overhang()

.partition_sequence_by_weights_at_least ()

.partition_sequence_cyclically_by_weights_at_most_with_overhang ()
.partition_sequence_cyclically by weights_at_most_without_overhang()
.partition_sequence_once_by_weights_at_most_with_overhang ()
.partition_sequence_once_by_weights_at_most_without_overhang()

.partition_sequence_by_weights_at_most ()

.partition_sequence_cyclically_by_weights_at_exactly_with_overhang()
.partition_sequence_cyclically_by_weights_at_exactly_without_overhang ()
.partition_sequence_once_by_weights_at_exactly_with_overhang()
.partition_sequence_once_by_weights_at_exactly_without_overhang ()

.partition_sequence_by_weights_at_exactly ()

.split_sequence_cyclically_by_weights_with_overhang ()
.split_sequence_cyclically_by_weights_without_overhang ()
.split_sequence_once_by_weights_with_overhang ()
.split_sequence_once_by_weights_without_overhang()

.split_sequence_by_weights ()

.split_sequence_extended_to_weights_with_overhang ()
.split_sequence_extended_to_weights_without_overhang ()

.split_sequence_extended_to_weights ()

Changes to the t ietools package:

¢ Renamed:

tietools.
tietools.
tietools.
tietools

tietools.

¢ Renamed:

tietools.
tietools.
tietools.
tietools.
tietools.
tietools.

tie_chain_to_augmented_tuplet_with_proportions_and_avoid_dots ()
tie_chain_to_augmented_tuplet_with_proportions_and_encourage_dots ()
tie_chain_to_diminished_tuplet_with_proportions_and_avoid_dots ()
.tie_chain_to_diminished_tuplet_with_proportions_and_encourage_dots ()

tie_chain_to_tuplet_with_ratio()

iterate_nontrivial_tie_chains_forward_in_expr ()
iterate_nontrivial_tie_chains_backward_in_expr ()
iterate_pitched_tie_chains_forward_in_expr ()
iterate_pitched_tie_chains_backward_in_expr ()
iterate_tie_chains_forward_in_expr ()
iterate_tie_chains_backward_in_expr ()

304

Chapter 63. Change log

Abjad Documentation, Release 2.12

tietools.iterate_nontrivial_tie_chains_in_expr (reverse=[True, False])
tietools.iterate_pitched_tie_chains_in_expr (reverse=[True, False])
tietools.iterate_tie_chains_in_expr (reverse=[True, False])

Changes to the tuplettools package:
* Renamed:

tuplettools.is_proper_tuplet_multiplier ()
durationtools.is_proper_tuplet_multiplier ()

¢ Renamed:
tuplettools.make_augmented_tuplet_from_duration_and_proportions_and_avoid_dots ()
tuplettools.make_diminished_tuplet_from_duration_and_proportions_and_avoid_dots ()

tuplettools.make_augmented_tuplet_from_duration_and_proportions_and_encourage_dots ()
tuplettools.make_diminished_tuplet_from_ duration_and_proportions_and_encourage_dots ()

tuplettools.make_tuplet_from_durations_and_proportions (big_endian=[True, Falsel])

Removed three packages.
* Removed constrainttools package.
* Removed lyricstools package.

* Removed quantizationtools package.

63.2. Older Versions 305

Abjad Documentation, Release 2.12

306 Chapter 63. Change log

CHAPTER
SIXTYFOUR

BIBLIOGRAPHY

307

Abjad Documentation, Release 2.12

308 Chapter 64. Bibliography

BIBLIOGRAPHY

[Adan2006] Victor Adan. Music <-> Geometry <-> Meta-Music. Draft February 12, 2006.

[AgonAssayagBresson2006] Carlos Agon, Gérard Assayag, Jean Bresson. The OM Composer’s Book 1. Editions
Delatour, Paris. 2006.

[AgonHaddadAssayag2002] Carlos Agon, Karim Haddad & Gerard Assayag. Répresentation et rendu de struc-
tures rhythmiques. Journées d’Informatique Musicale, 9th ed., Marseille, 29 - 31 May 2002.

[Alegant1993] Brian Alegant. The seventy-seven partitions of the aggregate: Analytical and theoretical implica-
tions. Doctoral Dissertation. The University of Rochester, Eastman School of Muisc. 1993.

[Ariza2005] Christopher Ariza. An Open Design for Computer-Aided Algorithmic Music Composition:
athenaCL. Dissertation.com, Boca Raton. 2005.

[BacaAdan2007] Trevor Baca & Victor Addn. Cuepatlahto and Lascaux: two approaches to the formalized con-
trol of musical score. Draft June 7, 2007.

[BressonAgonAssayag2008] Jean Bresson, Carlos Agon, Gérard Assayag. The OM Composer’s Book 2. Editions
Delatour, Paris. 2008

[Carter2002] Eliot Carter. Harmony Book. Nicholas Hopkins and John F. Link, eds. Carl Fischer, New York.
2002.

[Haddad] Karim Haddad. Le Temps comme Territoire: pour une géographie temporelle.

[Kampelal998] Arthur Kampela. Uma Faca Sé Lamina. Doctoral Dissertation. Columbia University, NY, NY.
1998.

[Malt2008] Mikhail Malt. Some Considerations on Brian Ferneyhough’s Musical Language Through His Use of
CAC - Part I: Time and Rhythmic Structures. In Bresson, Agon and Assayag (2008).

[Morris1987] Robert Morris. Composition with Pitch-Classes. Yale University Press, New Haven. 1987.

[Nauert1997] Paul Nauert. Timespan Formation in Nonmetric, Posttonal Music. Doctoral Dissertation. Columbia
University, NY, NY. 1997.

[NienhuysNieuwenhuizen2003] Han-Wen Nienhuys & Jan Nieuwenhuizen. Lilypond: A system for automated
music engraving. Proceedings of the XIV Colloquium on Musical Informatics. Firenze, Italy. May 8 - 10,
2003.

[Ross1987] Ted Ross. Teach Yourself The Art of Music Engraving and Processing. Hansen House, Miami Beach.
1987.

[Selfridge-Field1997] Eleanor Selfridge-Field, ed. Beyond MIDI: The Handbook of Musical Codes. The MIT
Press. Cambridge, Massachusetts. 1997.

[Valle] Andrea Valle. GeoGraphy: Notazione musicale e composizione algorithmica. Centro Interdipartimentale
di Ricerca sulla Multimedialita e I’ Audiovisivo. Universita degli Studi di Torino.

[WulfsonBarrettWinter] Harris Wulfson, G. Douglas Barrett & Michael Winter. Automatic Notation Generators.

309

	I Start here
	Abjad?
	Abjad extends LilyPond
	Abjad extends Python
	What next?
	Mailing lists

	Installation
	Abjad depends on Python
	Abjad depends on LilyPond
	Installing the current packaged version of Abjad with easy_install
	Installing the current packaged version of Abjad from the Python Package Index
	After install
	Note for Linux users

	Version history
	Abjad 2.12
	Performance increases
	Duration property renames
	Timespan integration
	Deepcopy changes
	Measure classes
	Other new features

	Abjad 2.11
	The MetricalHierarchy class
	Rewriting rhythms according to a different metric hierarchy
	The quantizationtools package
	The timerelationtools package
	Other new features

	Older versions
	Abjad 2.10
	Abjad 2.9
	Abjad 2.8
	Abjad 2.7
	Abjad 2.6
	Abjad 2.5
	Abjad 2.4
	Abjad 2.3
	Abjad 2.2
	Abjad 2.1
	Abjad 2.0

	II Examples
	Bartók: Mikrokosmos
	The score
	The measures
	The notes
	The details

	Ferneyhough: Unsichtbare Farben
	The proportions
	The transforms
	The rhythms
	The score
	The LilyPond file

	Ligeti: Désordre
	The cell
	The measure
	The staff
	The score

	Mozart: Musikalisches Würfelspiel
	The materials
	The structure
	The score
	The document

	Pärt: Cantus in Memory of Benjamin Britten
	The score template
	The bell music
	The string music
	The edits
	The marks
	The LilyPond file

	III System Overview
	Leaf, Container, Spanner, Mark
	Example 1
	Example 2

	Parsing
	LilyPond Parsing
	RhythmTree Parsing
	``Reduced-Ly'' Parsing

	IV Tutorials
	Getting started
	Knowing your operating system
	Chosing a text editor
	Launching the terminal
	Where to save your work

	LilyPond ``hello, world!''
	Writing the file
	Interpreting the file
	Repeating the process

	Python ``hello, world!'' (at the interpreter)
	Starting the interpreter
	Entering commands
	Stopping the interpreter

	Python ``hello, world!'' (in a file)
	Writing the file
	Interpreting the file
	Repeating the process

	More about Python
	Doing many things
	Looking around

	Abjad ``hello, world'' (at the interpreter)
	Starting the interpreter
	Entering commands
	Stopping the interpreter

	Abjad ``hello, world!'' (in a file)
	Writing the file
	Interpreting the file
	Repeating the process

	More about Abjad
	How it works
	Inspecting output

	Changing notes to rests
	A series of notes
	Notes belonging to a staff can be iterated
	Notes can be used directly

	Creating rest-delimited slurs
	Entering input
	Grouping notes and chords
	Skipping one-note slurs

	Making grob overrides
	Grob-override component plug-ins
	Grob proxies
	Dot-chained override syntax

	Mapping lists to rhythms
	Simple example

	Understanding LilyPond grobs
	Grobs control typography
	Grobs can be overridden
	Nested Grob properties can be overriden
	Check the LilyPond docs

	Understanding time signature marks
	Getting started
	LilyPond's implicit 4/4
	Using time signature marks
	First-measure pick-ups
	Time signature API

	Working with component parentage
	Improper parentage
	Proper parentage
	Parentage attributes

	Working with threads
	What is a thread?
	What are threads for?
	Coda

	V Reference manual
	Annotations
	Creating annotations
	Attaching annotations to a component
	Getting the annotations attached to a component
	Detaching annotations from a component one at a time
	Detaching all annotations attached to a component at once
	Inspecting the component to which an annotation is attached
	Inspecting annotation name
	Inspecting annotation value

	Articulations
	Creating articulations
	Attaching articulations to a leaf
	Attaching articulations to many notes and chords at once
	Getting the articulations attached to a leaf
	Detaching articulations from a leaf one at a time
	Detaching all articulations attached to a leaf at once
	Inspecting the leaf to which an articulation is attached
	Understanding the interpreter display of an articulation that is not attached to a leaf
	Understanding the interpreter display of an articulation that is attached to a leaf
	Understanding the string representation of an articulation
	Inspecting the LilyPond format of an articulation
	Controlling whether an articulation appears above or below the staff
	Getting and setting the name of an articulation
	Copying articulations
	Comparing articulations
	Overriding attributes of the LilyPond script grob

	Chords
	Making chords from a LilyPond input string
	Making chords from chromatic pitch numbers and duration
	Getting all the written pitches of a chord at once
	Getting the written pitches of a chord one at a time
	Adding one pitch to a chord at a time
	Adding many pitches to a chord at once
	Deleting pitches from a chord
	Formatting chords
	Working with note heads
	Working with empty chords

	Containers
	Creating containers
	Inspecting music
	Inspecting length
	Inspecting duration
	Adding one component to the end of a container
	Adding many components to the end of a container
	Finding the index of a component
	Inserting a component by index
	Removing a component by index
	Removing a component by reference
	Naming containers
	Understanding { } and << >> in LilyPond
	Understanding sequential and parallel containers
	Changing sequential and parallel containers
	Overriding containers
	Overriding containers' contents
	Removing container overrides

	Durations
	Introduction
	Assignability
	Prolation
	Tuplet prolation
	Meter prolation
	The prolation chain

	Duration types
	Written duration
	Prolated duration
	Contents duration
	Target duration
	Multiplied duration

	Duration initialization
	LilyPond multipliers
	Duration interfaces compared

	Instrument marks
	Creating instrument marks
	Attaching instrument marks to a component
	Getting the instrument mark attached to a component
	Getting the instrument in effect for a component
	Detaching instrument marks from a component one at a time
	Detaching all instrument marks attached to a component at once
	Inspecting the component to which an instrument mark is attached
	Inspecting the instrument name of an instrument mark
	Inspecting the short instrument name of an instrument mark

	I/O
	Reopening Abjad PDFs
	Looking at LilyPond output
	Looking at the LilyPond log

	LilyPond command marks
	Creating LilyPond command marks
	Attaching LilyPond command marks to Abjad components
	Getting the LilyPond command marks attached to an Abjad component
	Detaching LilyPond command marks from components one at a time
	Detaching all LilyPond command marks attached to a component at once
	Inspecting the component to which a LilyPond command mark is attached
	Getting and setting the command name of a LilyPond command mark
	Copying LilyPond commands
	Comparing LilyPond command marks

	LilyPond comments
	Creating LilyPond comments
	Attaching LilyPond comments to leaves
	Attaching LilyPond comments to containers
	Getting the LilyPond comments attached to a component
	Detaching LilyPond comments from a component one at a time
	Detaching all LilyPond comments attached to a component at once
	Inspecting the component to which a LilyPond comment is attached
	Inspecting contents string of a LilyPond comment

	LilyPond files
	Making LilyPond files
	Inspecting file output
	Setting default paper size
	Setting global staff size

	Measures
	Understanding measures in LilyPond
	Understanding measures in Abjad
	Creating measures

	Notes
	Making notes from a string
	Making notes from chromatic pitch number and duration
	Getting the written pitch of notes
	Changing the written pitch of notes
	Getting the duration attributes of notes
	Changing the written duration of notes
	Overriding notes
	Removing note overrides

	Pitches
	Creating pitches
	Inspecting the name of a pitch
	Inspecting the octave of a pitch
	Working with pitch deviation
	Sorting pitches
	Comparing pitches
	Converting one type of pitch to another
	Converting pitches to pitch-classes
	Copying pitches
	Accidental abbreviations
	Chromatic pitch numbers
	Diatonic pitch numbers
	Octave designation
	Accidental spelling

	Working with lists of numbers
	Rests
	Making rests from strings
	Making rests from durations
	Getting the duration attributes of rests
	Changing the written duration of rests

	Scores
	Creating scores
	Inspecting score music
	Inspecting score length
	Inspecting score duration
	Adding one component to the bottom of a score
	Finding the index of a score component
	Removing a score component by index
	Removing a score component by reference
	Testing score containment
	Naming scores

	Spanners
	Overriding spanners
	Overriding the components to which spanners attach
	Removing spanner overrides

	Staves
	Creating staves
	Inspecting staff music
	Inspecting staff length
	Inspecting staff duration
	Adding one component to the end of a staff
	Adding many components to the end of a staff
	Finding the index of a staff component
	Removing a staff component by index
	Removing a staff component by reference
	Naming staves
	Forcing context

	Tuplets
	Making a tuplet from a LilyPond input string
	Making a tuplet from a list of other Abjad components
	Understanding the interpreter display of a tuplet
	Understanding the string representation of a tuplet
	Inspecting the LilyPond format of a tuplet
	Inspecting the music in a tuplet
	Inspecting a tuplet's leaves
	Getting the length of a tuplet
	Getting the duration attributes of a tuplet
	Understanding rhythmic augmentation and diminution
	Understanding binary and nonbinary tuplets
	Adding one component to the end of a tuplet
	Adding many components to the end of a tuplet
	Finding the index of a component in a tuplet
	Removing a tuplet component by index
	Removing a tuplet component by reference
	Overriding attributes of the LilyPond tuplet number grob
	Overriding attributes of the LilyPond tuplet bracket grob

	Voices
	Making a voice from a LilyPond input string
	Making a voice from a list of other Abjad components
	Understanding the repr of a voice
	Inspecting the LilyPond format of a voice
	Inspecting the music in a voice
	Inspecting a voice's leaves
	Getting the length of a voice
	Getting the duration attributes of a voice
	Adding one component to the end of a voice
	Adding many components to the end of a voice
	Finding the index of a component in a voice
	Removing a voice component by index
	Removing a voice component by reference
	Naming voices
	Changing the context of a voice

	VI Developer documentation
	Codebase
	How the Abjad codebase is laid out
	Removing prebuilt versions of Abjad before you check out
	Installing the development version

	Docs
	How the Abjad docs are laid out
	Installing Sphinx
	Removing old builds of the docs
	Generating the Abjad API
	Building the HTML docs
	Building a PDF of the docs
	Building a coverage report
	Building other versions of the docs
	Inserting images with abjad-book
	Updating Sphinx

	Tests
	Automated regression?
	Running the battery
	Reading test output
	Writing tests
	Test files start with test_
	Avoiding name conflicts
	Updating py.test
	Running doctest on the tools directory

	Scripts
	Searching the Abjad codebase with abj-grep
	Removing old *.pyc files with abj-rmpycs
	Updating your development copy of Abjad with abj-update
	Counting lines of code with count-source-lines
	Global search-and-replace with replace-in-files
	Adding new development scripts

	Using abjad-book
	HTML with embedded Abjad
	LaTeX with embedded Abjad
	Using abjad-book on ReST documents
	Using [hide=true]

	Timing code
	Profiling code
	Memory consumption
	Class attributes
	Using slots
	Coding standards

	VII Appendices
	From Trevor and Víctor
	Why MIDI is not enough
	A very brief overview of MIDI
	Limitations of MIDI from the point of view of score modeling
	Written note durations vs. MIDI delta-times
	Written note pitch vs. MIDI note-on
	Conclusion

	Why LilyPond is right for Abjad
	Nested tuplets works out of the box
	Broken tuplets work out of the box
	Nonbinary meters work out of the box
	Lilypond models the musical measure correctly

	LilyPond text alignment
	Default alignment
	TextScript #'self-alignment-X
	TextScript #'X-offset

	Score Snippet Gallery
	Score snippet 1

	Change log
	Changes from 2.10 to 2.11
	Older Versions
	Changes from 2.9 to 2.10

	Bibliography
	Bibliography

